М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
boss23242
boss23242
19.01.2022 11:04 •  Геометрия

Дано: <3+<4=180. Довести: <2=<5

👇
Открыть все ответы
Ответ:
KoNetik2020
KoNetik2020
19.01.2022

ответ:4)а 5)в 6)б 7)в

Объяснение:4)Т.к центральный угол О =100°=> и дуга, на которую он смотрит тоже равна 100°,тогда х=50,потому что он вписаный(вписаный угол равен половине дуги ,на которую он опирается)

5)угол равен 70,тогда дуга равна 140(описанный угол,дуга в 2р больше него)

Вся окружность =360

360-140=220(это дуга,на которую смотрит х),тогда сам х=220:2=110(угол вписанный)

6)О=64,дуга тоже 64(центральный),х описанный =64/2=32

7)Т.к ВО(это радиус)=АД,то АД=ДО т.к ДО тоже радиус,тогда ВО в 2р меньше ВО,угол В=90 т.к радиус ,проведенный в точку касания явл. перпендикуляром на эту касательную.Тогда мы можем применить свойство треугольника :сторона,лежащая напротив угла в 30°=половине гипотенузы ,тогда угол ВАО=30,а ВАО=ОВС т.к это касательные вышли из 1ой точки,тогда угол ВАС=60

4,6(29 оценок)
Ответ:
zhenya270346
zhenya270346
19.01.2022
Касательная к окружности — прямая, имеющая с окружностью единственную общую точку.Понятие касательной к окружности и основные свойства касательной проиллюстрированы ниже на рисунке.. Угол  равен , где  — центр окружности. Его сторона  касается окружности. Найдите величину меньшей дуги  окружности, заключенной внутри этого угла. ответ дайте в градусах.Касательная к окружности перпендикулярна радиусу, проведенному в точку касания. Значит, угол  — прямой. Из треугольника  получим, что угол  равен  градуса. Величина центрального угла равна угловой величине дуги, на которую он опирается, значит, величина дуги  — тоже  градуса.ответ: .. Найдите угол , если его сторона  касается окружности,  — центр окружности, а большая дуга  окружности, заключенная внутри этого угла, равна . ответ дайте в градусах.Это чуть более сложная задача. Центральный угол  опирается на дугу , следовательно, он равен  градусов. Тогда угол  равен . Касательная перпендикулярна радиусу, проведенному в точку касания, значит, угол  — прямой. Тогда угол  равен .ответ: .. Хорда  стягивает дугу окружности в . Найдите угол  между этой хордой и касательной к окружности, проведенной через точку . ответ дайте в градусах.Проведем радиус  в точку касания, а также радиус . Угол  равен . Треугольник  — равнобедренный. Нетрудно найти, что угол  равен  градуса, и тогда угол  равен  градусов, то есть половине угловой величины дуги .Получается, что угол между касательной и хордой, проведенной через точку касания, равен половине угловой величины дуги, заключенной между ними.. Через концы ,  дуги окружности в  проведены касательные  и . Найдите угол . ответ дайте в градусах.Рассмотрите четырехугольник . Сумма углов любого выпуклого четырехугольника равна . Углы  и  и  — прямые, угол  равен , значит, угол  равен  градусов.ответ: .. К окружности, вписанной в треугольник , проведены три касательные. Периметры отсеченных треугольников равны , , . Найдите периметр данного треугольника.Вспомним еще одно важное свойство касательных к окружности: 
Отрезки касательных, проведенных из одной точки, равны. 
Периметр треугольника — это сумма всех его сторон. Обратите внимание на точки на нашем чертеже, являющиеся вершинами шестиугольника. Из каждой такой точки проведены два отрезка касательных к окружности. Отметьте на чертеже такие равные отрезки. Еще лучше, если одинаковые отрезки вы будете отмечать одним цветом. Постарайтесь увидеть, как периметр треугольника  складывается из периметров отсеченных треугольников.ответ: .Все эти задачи встречаются в Банке заданий ФИПИ под номером . А вот одна из сложных задач :. Около окружности описан многоугольник, площадь которого равна . Его периметр равен. Найдите радиус этой окружности.Обратите внимание — в условии даже не сказано, сколько сторон у этого многоугольника. Видимо, это неважно. Пусть их будет пять, как на рисунке. 
Окружность касается всех сторон многоугольника. Отметьте центр окружности — точку  — и проведите перпендикулярные сторонам радиусы в точки касания.Соедините точку  с вершинами . Получились треугольники  и . 
Очевидно, что площадь многоугольника . 
Как вы думаете, чему равны высоты всех этих треугольников и как, пользуясь этим, найти радиус окружности?
4,7(89 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ