1б)ΔKMN-прямоугольный , по свойству угла 30°⇒ KN=0,5*36=18.
Пусть NP=х , тогда РМ=36-х. Катет в прямоугольном треугольнике есть среднее пропорциональное между проекцией и гипотенузой : KN=NP*NM или 18²=х*36 , х=9, NP=9 , РМ=36-9=27
2б)
1)ΔСЕD=ΔCFD как прямоугольные по катетам ЕD=DF и гипотенузе CD-общая. В равных треугольниках соответственные элементы равны :∠ЕCD=∠FСD и СЕ=СF.
2)∠АЕD=∠ВFD=90.
ΔАЕD=ΔВFD как прямоугольные по катетам ЕD=DF и гипотенузам АD=DВ . В равных треугольниках соответственные элементы равны : АЕ=ВF и ∠А=∠В.
3) Т.к АЕ=ВF и
СЕ=СF , то АС=ВС.
ΔАСD=ΔВСD по стороне и двум прилежащим углам : АС=ВС, ∠ЕCD=∠FСD, ∠А=∠В.
2а) в приложенном файле.
2б)ΔKMN-прямоугольный , по свойству угла 30°⇒ KN=0,5*36=18.
Пусть NP=х , тогда РМ=36-х. Катет в прямоугольном треугольнике есть среднее пропорциональное между проекцией и гипотенузой : KN=NP*NM или 18²=х*36 , х=9, NP=9 , РМ=36-9=27
1) ΔАВС: ∠А=α, ∠С=2α, ∠В=180°-3α; 2) ΔADC: ∠A=α, ∠C=α, ∠D=180°-2α, значит ΔADC - равнобедренный, AD=DC. 3) Так как отрезок CD - биссектриса, то можно применить следующее свойство биссектрисы: AC:BC=AD:DB, по условию задачи DB:BC=1:2, значит DB=x, BC=2x. 6:2х=AD:x; AD=6x/2x=3 (см). AD=DC=3 см, АС=6 см - по условию. Получили треугольник со сторонами 3 см, 3 см и 6 см, но такого треугольника не существует, так как любая сторона треугольника должна быть меньше суммы двух других сторон (неравенство треугольника), а в этой задаче получилось, что одна из сторон равна сумме двух других (3+3=6). Это противоречие. Поэтому задача с таким условием не имеет решения. ответ: нет решения.
Объяснение:
1а) в приложенном файле.
1б)ΔKMN-прямоугольный , по свойству угла 30°⇒ KN=0,5*36=18.
Пусть NP=х , тогда РМ=36-х. Катет в прямоугольном треугольнике есть среднее пропорциональное между проекцией и гипотенузой : KN=NP*NM или 18²=х*36 , х=9, NP=9 , РМ=36-9=27
2б)
1)ΔСЕD=ΔCFD как прямоугольные по катетам ЕD=DF и гипотенузе CD-общая. В равных треугольниках соответственные элементы равны :∠ЕCD=∠FСD и СЕ=СF.
2)∠АЕD=∠ВFD=90.
ΔАЕD=ΔВFD как прямоугольные по катетам ЕD=DF и гипотенузам АD=DВ . В равных треугольниках соответственные элементы равны : АЕ=ВF и ∠А=∠В.
3) Т.к АЕ=ВF и
СЕ=СF , то АС=ВС.
ΔАСD=ΔВСD по стороне и двум прилежащим углам : АС=ВС, ∠ЕCD=∠FСD, ∠А=∠В.
2а) в приложенном файле.
2б)ΔKMN-прямоугольный , по свойству угла 30°⇒ KN=0,5*36=18.
Пусть NP=х , тогда РМ=36-х. Катет в прямоугольном треугольнике есть среднее пропорциональное между проекцией и гипотенузой : KN=NP*NM или 18²=х*36 , х=9, NP=9 , РМ=36-9=27