Площадь промоугольника S=AD*DC
где AD=ACcos37
DC=ACsin37
S=AC²*1/2sin74=4.32 см²
Пусть общая высота конуса и пирамиды равна Н.
Обозначим объемы конуса и пирамиды через V1 и V2 соответственно ,
а их боковые поверхности – через S1 и S2
тогда V1=1/3pi*R^3H , S1=pi*RL ,
где L-образующая конуса.
Найдем V2 и S2.
Так как периметр основания пирамиды равен 2р ,
а основание конуса – вписанная в основание пирамиды окружность,
то площадь основания пирамиды равна pR,
откуда V2=1/3pRH, S2=pL (высота любой грани равна L).
Тогда
V1 : V2 =1/3piR^2H : 1/3pRH = pi*R/p
S1 : S2 =pi*RL : pL = pi*R/p
ответ V1 : V2 = S1 : S2 = pi*R/p
Найти точки пересечения окружности и прямой, заданных уравнениями
x^2 + y^2 = 1 и y = 3x + 1 . Вложение номер 1
Написать уравнения прямой, проходящей через точки (2 ; 4) и (-2 ; 4,5) .—не знаю
Найти точки пересечения прямых -x + y - 2 = 0 и 6x + 8y +7 = 0. Вложение номер 2
Написать уравнение окружности с центром в точке M(2 ; -1) и радиусом 3. —не знаю
Две стороны треугольника равны 17 см и 25 см. Высота делит третью сторону на отрезки, разность которых равна 12 см. Найти периметр треугольника.
Обозначим часть стороны, которая образована высотой и углом, за х. Тогда вторая часть - 12+х
Составим два уравнения по т Пифагора.
Х^2+h^2=17*17
(12+X)^2 +h^2=25*25
Теперь сделаем из этого одно уравнение
Х^2+25*25-(12+X)^2=17*17
X^2-144-24X-X^2=17^2-25^2
-144-24x=(17-25)(17+25)
144+24x=336
24x=192
x=8
тогда вся сторона у нас равна 2x+12=16+12=28 см
Периметр равен 17+25+28=70см
Сторона АД прямоугольника, прилежащая к углу 37гр. равна АД = АС * cos 37.
Сторона АВ прямоугольника, противолежащая углу 37гр. равна АВ = АС * sin 37.
Площадь прямоугольника S = АД * АВ = АС^2 * cos 37 * sin 37 = 0.5 АС^2 * sin 74 =
= 0.5 * 9 * 0,9613 = 4,3 кв.см