Треугольник АВС - прямоугольный. Точка М - середина гипотенузы АС. Через точку М проведена прямая, перпендикулярная гипотенузе, которая пересекает ВС в точке Е. Найдите катет ВС, если ∠ВЕМ=120о, ЕС=4см.
Котангенсом называется отношение прилежащего углу катета к противолежащему. Угол АВС - тупой. .Косинус, тангенс и котангенс тупого угла равны отрицательным значениям смежного ему острого угла.
Найдем на прямой АВ точки, в которых она проходит точно по вершинам клеточек. Таких точек две ( на рисунке это К и М). Проведем по линиям клеток прямую КН параллельно ВС и прямую МН до пересечения с КН.
Треугольник МКН - прямоугольный. ∠МКН=∠МВС как соответственные при пересечении параллельных прямых КН и ВС секущей АВ. ctg(MBC)=ctg(MKH)=HK/MH=3/4. ⇒ ctg(ABC)= -3/4
Пусть АВ ∩ СD = О При пересечении двух прямых получаем пары равных углов : ∠AOD = ∠COB = x и ∠AOC = ∠DOB = y По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему : x + y + x = 278° 2 x + y = 278° 2 x + y = 278° ⇒ ⇒ x + y + x + y =360° 2 x + 2 y = 360° x + y = 180° Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒ х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98° Тогда у = 180° - х = 180° - 98° = 82° ответ : 98 ° ; 82° ; 98° ; 82°
Котангенсом называется отношение прилежащего углу катета к противолежащему. Угол АВС - тупой. .Косинус, тангенс и котангенс тупого угла равны отрицательным значениям смежного ему острого угла.
Найдем на прямой АВ точки, в которых она проходит точно по вершинам клеточек. Таких точек две ( на рисунке это К и М). Проведем по линиям клеток прямую КН параллельно ВС и прямую МН до пересечения с КН.
Треугольник МКН - прямоугольный. ∠МКН=∠МВС как соответственные при пересечении параллельных прямых КН и ВС секущей АВ. ctg(MBC)=ctg(MKH)=HK/MH=3/4. ⇒ ctg(ABC)= -3/4