Если диагонали четырёхоугольника перпендикулярны, то этот четырёхугольник - ромб, а значит, все его стороны равны, т.е. АВ=ВС=СD=АD=а.
Если этот ромб вписали в окружность, то он-правильный. А правильный ромб-это квадрат.
Значит, АВСD-квадрат.
Точка О является центром окружности.
Также она является серединой пересечения диагоналей.
По теореме Пифагора находим, что ОВ= а*корень из 2 и всё поделить на 2
Пусть ОН-расстояние от точки О до стороны АВ. ВН=половине АВ= а\2
Находим ОН. Также по теореме Пифагора.
ОН= а\2
Каждая сторона треугольника меньше суммы двух других сторон.
Рассмотрим несколько случаев.
Случай 1. Боковые стороны равны 3 см.
Итак, все стороны должны удовлетворять неравенствам.
3 см+3 см > 7 см ⇒ 6 см > 7 см - это уже неверно, поэтому боковая сторона не может быть 3 см.
Случай 2. Боковые стороны равны 7 см.
7 см+7 см > 3 см ⇒ 14 см > 3 см
7 см+3 см > 7 см ⇒ 10 см > 7 см
7 см+3 см > 7 см ⇒ 10 см > 7 см.
Итак, все стороны удовлетворяют неравенствам. Треугольник со сторонами 7 см, 7 см, 3 см.
Периметр треугольника = 7 см+7 см+3 см = 17 см.
ответ: 17 см.