ромб - параллелограмм, у кот.все стороны равны
диагонали ромба перпендикулярны и делятся точкой пересечения пополам (как и у любого параллелограмма)
диагонали ромба - биссектрисы его углов
ромб ABCD AB=BC... AB=BD => треугольник ABD - равносторонний
в равностороннем треугольнике все стороны и все углы равны => BAD = 180/3=60 = BDA = DBA
BD - биссектриса CDA => CDA = 2BDA = 2*60 = 120
BAD = BCD, CDA = CBA (т.к. ромб - это параллелограмм)
вторая диагональ AC = AO + OC
из ABO (AB=10, BO=5) по т.Пифагора AO = корень(10*10-5*5) = корень(100-25) = корень(75) = корень(25*3) = 5*корень(3)
1. S BOC = 1/2 BC * h1. S AOD = 1/2 AD *h2. h1=h2 , т. к. в трапеции перпендикуляры, опущенные на основания из точки пересечения диагоналей, равны. S BOC / S AOD = 9 / 1.
S BOC = 9 * S AOD
1/2 BC * h1 = 9 * 1/2 AD * h2 . Умножим обе части на 2/h1
BC = 9 * AD
Подставляем в условие, что сумма оснований 4.8 , тогда
BC + AD = 9 * AD + AD= 4.8
10 AD =4.8
AD = 0.48 cм
BC = AD * 9=0.48 * 9 =4.32 cм.
2. А вы точно условие правильно написали? там т.О не является серединой?