Если достроим прямоугольный треугольник до прямоугольника так, чтобы гипотенуза была его диагональю (то есть присоединим к треугольнику второй такой же точно), то площадь такого прямоугольника будет ровно в 2 раза больше площади треугольника, то есть 2 * 512 * корень(3) = 1024*корень(3).
А также площадь прямоугольника равна произведению катетов. Обозначим меньший катет буквой х, тогда больший будет х*tg(x) = x*корень(3).
Итого, имеем площадь прямоугольника х*х*корень(3) = 1024*корень(3).
Корень(3) сокращаем, остаётся х*х = 1024. Отсюда х = корень(1024) = 32.
Ничего задачка, можно нарушить самозапрет на публикации. Вся идея состоит в том, что у треугольников общая описанная окружность, а площадь можно выразить через радиус окружности и углы. S = a*b*sin(γ)/2 = 2*R*sin(α)*2*R*sin(β)*sin(γ)/2 = 2*R^2*sin(α)*sin(β)*sin(γ); Пусть высоты CM BN и AP; (просто таким образом я определяюсь, на какой дуге лежит какая из точек M, P, N, по хорошему это все равно, как обозначить.) Пусть ∠CAB = α = π/3; ∠CBA = β = π/4; Тогда ∠ACM = ∠NBA = π/2 - π/3 = π/6; А ∠APM = ∠ACM; ∠APN = ∠ABN; (высоты ABC являются биссектрисами треугольника MNP, также как для ортотреугольника) То есть ∠NPM = 2*(π/2 - α) = π - 2*α = π/3; Аналогично ∠NPM = 2*(π/2 - β) = π - 2*β = π/2; (получился прямоугольный треугольник) Так как sin(2α) = 2*sin(α)*cos(α), то очевидно, что Smnp/Sabc = 8*cos(α)*cos(β)*cos(α + β); Если подставить, получится 8*cos(π/3)*cos(π/4)*cos(π/3 + π/4); в данном случае надо взять по абсолютной величине, разумеется (то есть не обращать внимания, что cos(7π/2) < 0; а просто отбросить знак) 8*(1/2)*(√2/2)*l(√2/4 - √6/4)l = √3 - 1;
Нехай дано трикутник АВС, ∠А = 90, тоді ∠B = х, ∠С = 5х. Рівняння:
х + 5х + 90 = 180
6х = 90
х = 15
∠B = х = 15, ∠С = 5х = 75;
ОДИН РОЗВ'ЯЗОК.