Площадь круга находят по формуле
S =πr²
Радиус вписанного в треугольник круга можно найти по формуле
r=S:p, где S- площадь треугольника, р- его полупериметр.
р=(10+24+26):2=30
Площадь треугольника найдем по формуле Герона:
S=√{(p−a)(p−b)(p−c)}, где р- полупериметр треугольника, а, b и с - его стороны.
S=√(30•20•6•4)= √(6•5•5•4•6•4)=6•5•4=120
r=120:30=4 см
S =16π см²
Радиус найти будет проще, если заметить, что отношение сторон этого треугольника из так называемых Пифагоровых троек, а именно 10:24:26=5:12:13 Это отношение сторон прямоугольного треугольника.
Тогда по формуле радиуса вписанной в прямоугольный треугольник окружности
r=(a+b-c):2, где а, b - катеты, с - гипотенуза:
r=(10+24-26):2=4 cм.
Площадь круга, естественно. будет та же - 16π см²
Площадь круга находят по формуле
S =πr²
Радиус вписанного в треугольник круга можно найти по формуле
r=S:p, где S- площадь треугольника, р- его полупериметр.
р=(10+24+26):2=30
Площадь треугольника найдем по формуле Герона:
S=√{(p−a)(p−b)(p−c)}, где р- полупериметр треугольника, а, b и с - его стороны.
S=√(30•20•6•4)= √(6•5•5•4•6•4)=6•5•4=120
r=120:30=4 см
S =16π см²
Радиус найти будет проще, если заметить, что отношение сторон этого треугольника из так называемых Пифагоровых троек, а именно 10:24:26=5:12:13 Это отношение сторон прямоугольного треугольника.
Тогда по формуле радиуса вписанной в прямоугольный треугольник окружности
r=(a+b-c):2, где а, b - катеты, с - гипотенуза:
r=(10+24-26):2=4 cм.
Площадь круга, естественно. будет та же - 16π см²
7
Объяснение
Нарисуем две линии так, чтобы между ними был угол 60 градусов.
Обозначим первый за а, второй за b
Выберем направление вектора а такое, чтобы он был направлен в вектор b (см. рисунок)
Выберем направление вектора b такое, чтобы он был направлен от вектора а (см. рисунок)
По правилу треугольника проведём вектор a-b
Из конца вектора b в начало вектора a
По теореме косинусов
(a-b)^2=9+64-2*24*(1/2)
(a-b)^2=49
|a-b|=7