Построение треугольника: 1) Проведём прямую a. 2) Построим перпендикулярную к ней прямую b: -Проведём окружность произвольного радиуса с центром в произвольной точке (в нашем случае ,в точке О) так,что она пересечёт прямую a в точках M и N; -Проведём две окружности радиуса MN с центрами в точках M и N так,что они пересекутся в двух точках F и S; -Проведём прямую b через точки F и S; точки F,O,S лежат на одной прямой b; -a⊥b. 3)Проведём окружность произвольного радиуса с центром в точке О так,что она пересечёт прямые a и b в двух точках каждую;нам нужны лишь две : A и B (A∈a,B∈b) 4)Соединим точки A и B. 5) AOB -- прямоугольный равнобедренный треугольник.
Прямой угол можно построить и с циркуля!
Поворот вокруг вершины B на 90 градусов: 1) Транспортиром откладываваем два прямых угла: один от точки B для от прямой a,другой от этой же точки,но для прямой AB -- прямые a и c образуют угол в 90°,AB и d так же. 2) Раствором циркуля берём расстояние BO и переносим его на прямую c,откладывая от точки B;отмечаем точку O'. Затем берём расстояние AB и откладываем на прямой d от точки B его же,отметив точку A'. AB=A'B,OB=O'B. Соединим точки: B с O',O' с A',A' с B 3) A'O'B -- образ треугольника AOB при повороте на 90 градусов по часовой стрелке вокруг точки B.
Расстоянием от точки до прямой называется длина кратчайшего перпендикуляра. таким образом, необходимо опустить перпендикуляр из точки с на прямую sa. для этого достроим равнобедренный треугольник sca и перпендикуляр сk, при чем k лежит на самой стороне sa, так как угол sca острый. обозначим ck за х. тогда по т. пифагора: х^2+sk^2=sc^2 x^2+ak^2=ac^2. отсюда приравняем: sc^2-sk^2=ac^2-ak^2. 4-sk^2=sqrt2(диагональ через 1 вершину в правильном шестиугольнике в sqrt2 раза больше стороны, т.е. ac=ab*sqrt2=-sk)^2. 4-sk^2=sqrt2-(4-4sk+sk^2). 4-sk^2=sqrt2-4+4sk-sk^2. 4=sqrt2-4+4sk. 4sk=8-sqrt2. sk=2-(sqrt2)/4. kc^2=sc^2-sk^2=4-(4-sqrt2+1/8)=sqrt2-1/8. kc=sqrt(sqrt2-1/8).
по определению синус угла = отношению противолежащего катета к гипотенузе
sinB = b/c с=гипотенуза
c = b/sinB
по определению косинуса второй катет a = c*cosB = b*cosB/sinB
P = a+b+c = b*cosB/sinB + b + b/sinB = (1+ sinB + cosB) * b/sinB