73/62
Объяснение:
Треугольник, который образовался когда провели биссектрису и высоту - прямоугольный. Т.к. один угол прямоугольного треугольника равен 17 градусам, то второй будет равен 90-17=73
А если имеется в виду треугольник, который был дан изначально, то больший острый угол будет равен 62 градусам. В мелком треугольнике мы нашли второй острый угол. Он смежный с другим углом, равным 180-75=107. В треугольнике, в котором находится этот смежный угол, нам известен еще один, равный 45 градусам (Мы это узнали, когда 90 градусов разделили на два - была биссектриса). Тогда узнать третий угол данного треугольника не сложно - 180-107-45=28 градусов. Итак, мы разобрали два треугольника, которые находятся в основном треугольном. остался третий. Он появился, когда мы провели высоту. Нам известен один угол, равный 45 градусам (он появился из-за биссектрисы). В этом углу содержатся еще два угла, один из которых равен 17 градусам. Посчитаем второй - 45-17=28 градусов. И вот в треугольнике нам известны два угла - один прямой (он был образован биссектрисой), а второй равен 28 градусам. Посчитаем третий угол - 180-90-28=62 градуса. Это и есть второй острый угол основного прямоугольного треугольника. Схему прикрепить не могу, т.к. работаю на компе, надеюсь вы все поняли.
S = pr( р - это полупериметр многоугольника,r это радиус вписанной окружности)
Пусть сторона шестиугольника равна а, тогда р = 3а, r =![\frac{a}{\sqrt{3}}](/tpl/images/0125/9426/93598.png)
60 =![3a*\frac{a\sqrt{3}}{2}}=\frac{3a^2\sqrt{3}}{2}](/tpl/images/0125/9426/107b2.png)
S(АВС)= a*a*sin 120 =![\frac{40}{\sqrt{3}}*\frac{\sqrt{3}}{2}=20](/tpl/images/0125/9426/2e5bf.png)
S(ACD)=30-20=10( Т. К S ABC + S ACD РАВНА ПОЛОВИНЕ ШЕСТИУГОЛЬНИКА)