Не могу нарисовать рисунок, но попытаюсь объяснить.
Пусть имеется прямоугольный треугольник ABC с гипотенузой AC и прямым углом при вершине В.
Пусть точка О – пересечение заданных биссектрис. Один из углов при О = 100 градусов
Вариант 1.
Расcмотрим треугольник ABO. Угол AOB=100, угол ABO=45 (потому что BO – биссектриса угла В, который 90 град)
Тогда угол BAO=180-100-45=35
Угол BAC вдвое больше BAO и равен 35*2=70.
Оставшийся уголACB =180-90-70=20.
Вариант 2.
(если вдруг возникнет иллюзия считать, что распределение углов при точке О другое – то есть 100 град = угол AOD, где точка В – точка пересечения биссектрисы из вершины B со стороной AC, То в таком случае:
Всё равно рассмотрим треугольник ABO. Только угол AOB=180-100=80. угол ABO всё равно 45 (потому что BO – биссектриса угла В, который 90 град)
Тогда угол BAO=180-80-45=55.
Угол BAC в этом случае вдвое больше BAO и равен 55*2=110. И тут упс – сумма двух углов начального прямоугольного треугольника уже становится больше 180, а ведь есть ещё и третий угол. Поэтому распределение углов при точке О только такое, как в первом варианте решения. Второй вариант нежизне
1. Т.к. АВ=ВС=10, то тр.АВС равнобедренный.
2. Если О- центр вписанной окружности, то О- центр тр.АВС => биссектриссы тр., проведённые из равных углов будут равны и точкой пересечения делиться в отношении 2:1.
3. Найдём одну из них. Биссектрисса в равноб. тр.АВС будет высотой и медианой => сторона ВС будет разделена пополам, и образуется прямоугольный тр.ВМС,где К=90гр. и является серединой ВС. По т. Пифагора найдём АМ. АМ=9см.
4. ОМ=1/3 АК=3см.
5. Т к. ОК перпед. АВС, то тр.ОКМ - перпендикулярный. По т. Пифагора найдем КМ. КМ=5см. Ч. т. д.