М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
AnjelikaM1
AnjelikaM1
12.01.2021 12:55 •  Геометрия

Из точки к проведены к плоскости перпендикуляр ко и наклонные ка и кв. длины наклонных соответственно равны 13 см и 20 см. проекция наклонной ак= 5см. найти длину проекции наклонной кb

👇
Ответ:
iSia07
iSia07
12.01.2021

1) АО-проекция КА на плоскость. рассматриваем трАОК-прямоугольный,

по тПифагора КО=√AK^2-AO^2   KO= √13^2-5^2=12cm

2) ВО-проекция КВ на плоскость. рассматриваем трВОК-прямоугольный,

по тПифагора   ОВ=√ВK^2-КO^2  OВ= √20^2-12^2= 16cm


Из точки к проведены к плоскости перпендикуляр ко и наклонные ка и кв. длины наклонных соответственн
4,7(28 оценок)
Ответ:
verona911
verona911
12.01.2021
Для начала, давайте разберемся с данными. У нас есть точка К, наклонная КА длиной 13 см и наклонная КВ длиной 20 см. Также известно, что проекция наклонной КА равна 5 см.

Для решения этой задачи, нам понадобится использовать подобие треугольников. Давайте внимательно рассмотрим ситуацию.

Так как наклонная КА перпендикулярна к проведенной от точки К, она является высотой треугольника КАЦ, где Ц - это точка пересечения наклонной КА с плоскостью.

Теперь обратимся к треугольнику КВЦ. У нас есть две наклонные: КА и КВ. Из условия задачи мы знаем, что длина наклонной КА равна 13 см, а проекция этой наклонной равна 5 см. Это означает, что отрезок КЦ (высота треугольника КАЦ) равен 5 см.

Мы также помним, что треугольник КВЦ является прямоугольным, поскольку наклонная КА перпендикулярна к плоскости. Таким образом, КВ является гипотенузой треугольника КВЦ.

Используя эти данные, мы можем составить следующее уравнение по теореме Пифагора для треугольника КВЦ:

КВ² = КЦ² + ВЦ²

Заменим известные значения:

КВ² = 5² + ВЦ²
КВ² = 25 + ВЦ²

Теперь нам нужно найти длину проекции наклонной КВ. Давайте обозначим эту проекцию как ВС.

Мы знаем, что проекция наклонной КА равна 5 см, и так как треугольник КВЦ подобен треугольнику КАЦ, проекция наклонной КВ будет равна проекции наклонной КА в том же отношении, в котором длины наклонных КА и КВ.

Таким образом, мы можем записать следующее уравнение:

ВС/КВ = КА/КВ

Заменяем известные значения:

ВС/КВ = 5/13

Теперь мы можем решить это уравнение, чтобы найти длину проекции наклонной КВ (ВС):

ВС = (5/13) * КВ

Мы знаем, что КВ = √(25 + ВЦ²), поэтому мы можем подставить это значение:

ВС = (5/13) * √(25 + ВЦ²)

Это и есть искомая длина проекции наклонной КВ.
4,6(55 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ