АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
В треугольной пирамиде Найдём площадь боковой поверхности, как сумму площадей боковых граней. Т. к. площади двух граней одинаковы и они являются прямоугольными треугольниками, найдём их катеты: АС=а- по условию, найдём AD из прямоугольного треугольника DKA , где К- пересечение апофемы грани DBC со стороной ВС. АК=а корней из 3 делить на 2. Тогда AD=АК*tg30 градусов, AD=а корней из 3разделить на 2 и умножить на 1/ на корень из 3. Получим AD=а/2. Тогда площадь треугольника ADC будет а/2*а*1/2=а в квадрате делённое на 4, но таких площадей 2, тогда их сумма будет а квадрат разделить на 2. Найдём площадь грани DCB, для этого найдём DK=а корней из3 разделить на 2 и умножить на cos30=а корней из 3 делить на 2 и умножить на cos 30= а корней из 3 делить на 2* на корень из 3 делённое на 3=3а/4. Найдём площадь а*3а/4 и разделитьна 2. Получим 3а в квадрате разделить на 8. Найдём площадь боковой поверхности: а квадрат делить на 2+ 3а квадрат разделить на .8. 2.В основании ромб, с остым углом 60 градусов, значит высота ромба будет: а*sin60=а корней из 3 разделить на 2. Построим плоскость сечения. Это будет AD1C1B, построим угол наклона этой плоскости к основинию: Проведём два перпендикуляра к ребру АВ -это DP в основании и D1P в плоскости сечения. Найдём высоту призмы: DK*tg60=а корней из 3 на 2 умножить на корень из 3=3а/2. Найдём площадь поверхности: S ромба умножим на 2 , прибавим 3а/2*а*4=6а в квадрате. Сложим полученные величины:6а в квадрате+ площадь ромба, а она равна а квадрат корней из 3 разделить на 2. И так ответ 6а в квадрате +а в квадрате корней из 3.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.