Получаем прямоугольный треугольник со сторонами 6, 8 и 10. ∠C = 90° ∠A можно определить по синусу угла, т.е. по отношению противолежащего катета BC к гипотенузе AB
sin(A) = BC/AB sin(A) = 8/10 = 0,8
По таблице Брадиса находим, что данной величине приблизительно соответствует угол 53°7' ≈ 53°
У меня тут есть где то красивый рисунок, по которому сразу видно, почему точка G лежит на HO и делит его в пропорции OG/GH = 1/2; (теорема Эйлера). Если есть треугольник ABC, и точка A1 - "противоположная" A точка на описанной окружности (то есть AA1 - диаметр описанной окружности), то A1BHC - параллелограмм, поскольку A1C II BH - обе прямые перпендикулярны AC; то же для A1B II CH; Поэтому, если М - середина BC, то AM является медианой не только тр-ка ABC, но и треугольника AA1H; другой медианой этого треугольника является HO; этим всё доказано. К этой задачке это имеет косвенное отношение, скорее - это "теория". Все, что надо - это что OG/GH = 1/2; Дан треугольник IHO; IH = p; IO = d; HO = q; надо найти x = IG; где HG = 2q/3; дальше одна теорема косинусов. t = cos(∠IHO) d^2 = p^2 + q^2 - 2pqt; x^2 = p^2 + (2q/3)^2 - 2p*(2q/3)t = p^2 + 4q^2/9 + 2/3(d^2 - p^2 - q^2) = p^2/3 + 2d^2/3 - 2q^2/9; собственно это ответ, если я нигде не напутал с цифрами.
Чертёж смотрите во вложении.
Дано:
ΔABC - прямоугольный.
∠С = 90°.
СН - высота, проведённая к гипотенузе АВ.
НВ - проекция катета СВ на гипотенузу АВ = 9 см.
СВ = 15 см.
Найти:
S(ΔАВС) = ?
P(ΔАВС) = ?
Пусть АН = х.
По свойству проекций -
АB = 9 (cм)+х.
Подставим в формулу известные нам значения и решим полученное уравнение -
АН = х = 16 см.
АВ = 9 см+16 см = 25 см.
По теореме Пифагора -
Подставим в формулу известные нам значения и найдём значение АС -
AC = 20 см.
P(ΔАВС) = АС+АВ+СВ = 20 см+25 см+15 см = 60 см.
Площадь прямоугольного треугольника равна половине произведения его катетов -
S(ΔABC) = 0,5*CB*AC
S(ΔABC) = 0,5*15 см*20 см
S(ΔABC) = 150 см².
ответ: 150 см², 60 см.