1) Четырехугольник ADEC - трапеция (DE ║ AC). ∠BAC = ∠BCA ⇒ трапеция равнобедренная, значит, AD = CE = BA - BD = 6. В трапеции ∠ВАС = ∠BCA ⇒ и ∠ADE = ∠CED. ΔADE = ΔCED по двум сторонам и углу между ними (AD = CE, DE - общая, ∠ADE = ∠CED). 2) AD║CF, AC║DF ⇒ ADFC - параллелограмм, значит, ∠DAC = ∠CFE. ∠ACE = ∠FEC как накрест лежащие углы при пересечении AC║DE секущей СЕ. Значит, ΔECF подобен ΔАВС по двум углам. 3) Т.к. ΔECF подобен ΔАВС, то EF/AC = CE/BC EF/10 = 6/13 ⇒ EF = 60/13 4) Пусть h - высота треугольника АВС, опущенная на боковую сторону. Тогда Sabc = 13h/2 = √(p(p - a)(p - b)(p - c), где a, b, c - стороны треугольника АВС, р - его полупериметр 13h/2 = √(18 · 5 · 5 · 8) 13h/2 = √(9 · 2 · 5 · 5 · 4 · 2) = 3 · 5 · 4 = 60 h =120/13 5) AC║DF, значит, расстояние от точки А до DE и от точки С до DF одинаковы, т.е. ΔADE и ΔDCF имеют одинаковые высоты, опущенные к основаниям DE и DF соответственно. Значит, площади этих треугольников относятся как длины этих оснований. Sade/Sdcf = DE/DF DF = AC = 10 как противолежащие стороны параллелограмма, DE = DF - EF = 10 - 60/13 = 70/13 Sade/Sdcf = (70/13) / 10 = 7/13
Государство ак-орда на территории восточного дешт-и-кыпчака из золотой орды (улус джучи) выделилась ак орда. в xiv веке вся территории казахстана, кроме семиречья, входила в ак орду. ставка г. сыгнак. первым ханом был сасы-бука из рода орда еджена. ему подчинялись удельные владетели, осуществляемые в пределах своих уделов. расцвет государства наблюдается при урус-хане, правившем в 60-е - 70-е годы xiv века. ак орда в союзе с могулистаном воевала с государством эмира тимура. в 1423-1428 гг правил последний хан ак орды - барак. могулистан в xiv веке в юго-восточном казахстане в результате распада государства чагатаидов образовалось государство могулистан. его населяли, преимущественно, усуни, , дулаты. ставка - город алмалык. глава феодальной знати эмир пуладчи - основатель могулистана, назначил в 1347 году ханом тоглук-тимура. политическим главой был хан, ему в улусбек родом из дулат. первое упоминание о могулистане встречается у мухаммеда хайдара дулати в книге «тарихи рашиди». хызр-ходжа признал себя и могулистан зависимым от тимура, при мухаммед-хане могулистан стал независимым от тимура. мухаммед-хан упорно насаждал в могулистане ислам. вайс-хан отличился в борьбе с ойратами. могулистан распался в борьбе с тимуром. в xvi веке могулистан вошёл в казахское ханство.
В трапеции ∠ВАС = ∠BCA ⇒ и ∠ADE = ∠CED.
ΔADE = ΔCED по двум сторонам и углу между ними (AD = CE, DE - общая, ∠ADE = ∠CED).
2) AD║CF, AC║DF ⇒ ADFC - параллелограмм, значит, ∠DAC = ∠CFE.
∠ACE = ∠FEC как накрест лежащие углы при пересечении AC║DE секущей СЕ. Значит, ΔECF подобен ΔАВС по двум углам.
3) Т.к. ΔECF подобен ΔАВС, то EF/AC = CE/BC
EF/10 = 6/13 ⇒ EF = 60/13
4) Пусть h - высота треугольника АВС, опущенная на боковую сторону.
Тогда Sabc = 13h/2 = √(p(p - a)(p - b)(p - c), где a, b, c - стороны треугольника АВС, р - его полупериметр
13h/2 = √(18 · 5 · 5 · 8)
13h/2 = √(9 · 2 · 5 · 5 · 4 · 2) = 3 · 5 · 4 = 60
h =120/13
5) AC║DF, значит, расстояние от точки А до DE и от точки С до DF одинаковы, т.е. ΔADE и ΔDCF имеют одинаковые высоты, опущенные к основаниям DE и DF соответственно. Значит, площади этих треугольников относятся как длины этих оснований.
Sade/Sdcf = DE/DF
DF = AC = 10 как противолежащие стороны параллелограмма,
DE = DF - EF = 10 - 60/13 = 70/13
Sade/Sdcf = (70/13) / 10 = 7/13