найдем координаты середины диагоналей четырехугольника ABCD:
середина диагонали АС
x=(0+5)/2=2.5
y=(1+1)/2=1
(2.5;1)
середина диагонали BD
x=(4+1)/2=2.5
y=(3+(-1))/2=1
(2.5;1)
таким образом диагонали четырехугольника пересекаются в точке, что делит их пополам, поэтому за признаком парарлелограмма четырехугольник АВСD - парареллограм
найдем длины диагоналей
AC=((5-0)^2+(1-1)^2)=5
BD=((4-1)^2+(-1-3)^2)=5
диагонали параллелограма ABCD равны АC=BD, за признаком прямоугольника ABCD- прямоугольник. Доказано
Подробнее - на -
Объяснение:
основание ABCD - параллелограмм ;
AB =CD =3 см , BC =AD =7 см , BD =6 см ;
SO ⊥ (ABCD) ,SO =H =4 см ,O - точка пересечения диагоналей .
------
SA =SC -? , SB=SD -?
---
Известно: AC²+BD² = 2(AB²+BC²)
⇒AC =√(2(AB²+BC²) - BD²) =√(2(3²+7²) -6²) =4√5 (см).
Из ΔAOS по теореме Пифагора :
SA =√(AO²+SO²) =√((AC/2)²+SO²)=√(2√5)²+4²) =6 (см).
Аналогично из ΔBOS:
SB =√(BO²+SO²) =√((BD/2)²+SO²)=√(3²+4²) =5 (см).
* * * диагонали параллелограммы в точке пересечения делятся пополам * * *
ответ: SA =SC = 6 см SB=SD =5 см.