Точка пересечения высот ВК и РН треугольника ВЕР является центром вписанного в него круга докажите что треугольник ВЕР равносторонний.
Объяснение:
Дано: ВК⊥ЕР, РН⊥ВЕ О- точка пересечения высот, О-центр вписанной окружности.
Доказать: ΔВЕР-равносторонний.
Доказательство.
1)Центр вписанной окружности треугольника - точка пересечения биссектрис треугольника ⇒ВК, РН- биссектрисы.Обозначим ∠ЕВК=∠КВР=х, ∠ЕРН=∠НРВ=у.
Тогда в ΔВОР , ∠ВОР=180-х-у.
В четырехугольнике ЕНОК сумма углов 360°⇒∠НЕК=360-90-90-∠ВОР, ∠НЕК=180-180+х+у, ∠НЕК=х+у.
ΔВЕК-прямоугольный, х+(х+у)=90°, по свойству острых углов, у=90°-2х.
ΔРЕН-прямоугольный, у+(х+у)=90° ,по свойству острых углов. Подставим 90°-2х+(х+90°-2х)=90° ⇒х=30°.
Найдем у=90°-2х⇒у=30°.
Найдем углы ∠ЕВК=∠КВР=х ⇒∠ЕВР=60°
∠ЕРН=∠НРВ=у ⇒∠ЕРВ=60°.
∠НЕК=х+у⇒∠НЕК=60°. ΔВЕР-равносторонний.
1) Обозначим расстояние от В до плоскости - ВС,
от М до плоскости - МН.
АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой.
Отрезки, перпендикулярные плоскости , параллельны.
Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые,
угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны.
Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒
ВС:МН=5:2
МН=2•(12,5:5)=5 м
Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м.
––––––––––––––––––––––––––––––––––––––
2)Пусть наклонные будут:
ВС=а, ВА=а+6
ВН- расстояние от общего конца В до плоскости.
Т.к. это расстояние общее, ВН⊥ плоскости, то
из прямоугольного ∆ АВН
ВН²=АВ²-АН²
из прямоугольного ∆ ВСН
ВН²=ВС²-НС²⇒
АВ²-АН²=ВС²-НС²
(а+6)²-17²=а²-7²
⇒ решив уравнение, получим
12а=204
а=17 см
ВС=17 см
АВ=17+6=23 см
–––––––––––––––––––––
3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м.
Т.к. обе вертикальные, то они параллельны.
Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м,
∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат).
ответ - 5 м.