Хорда окружности удалена от центра на расстояние h. в каждый из сегментов, стягиваемых хордой, вписан квадрат так, что две соседние вершины квадрата лежат на дуге, две другие-на хорде. чему равна разность длин сторон квадрата?
Шаг 1. Для удобства описания решения позволю себе обозначить O как O2, F как F1 и E как F2. Шаг 2. Обозначим точку пересечения AB и O1 O2 как D. Шаг 3. Решение будет симметрично относительно прямой AB, поэтому индексы я опускаю. Рассматриваем треугольник OBD: угол D прямой. значит, OD^2 = OB^2 - BD^2. Шаг 4. Рассматриваем треугольник OMD: угол D прямой, значит, OM^2 = OD^2 + MD^2 = OB^2 - BD^2 + MD^2. Шаг 5. Рассматриваем треугольник OMF: угол F прямой, значит, MF^2 = OM^2 - OF^2 = OB^2 - BD^2 + MD^2 - OF^2. Вспоминаем, что OB = OF = R - радиус окружности, поэтому, MF^2 = MD^2 - BD^2. Равенство справедливо как для первой окружности, так и для второй. Осталось подставить соответствующие индексы..
Если a и b не лежат в одной плоскости, значит прямые скрещивающиеся, через них плоскость нельзя провести.
Докажем от противного. Пусть обе плоскости, проведенные через а, будут || b. Две плоскости параллельны прямой b, следовательно прямая пересечения а этих двух плоскостей будет параллельна прямой b. Вышло, что b и а параллельные прямые, а по теореме, через две параллельные прямые можно провести плоскость. Получили противоречие условию, так как а и b не должны лежать в одной плоскости. Следовательно, одна из плоскостей, проведенная через а, не будет параллельна прямой b.
a - сторона квадрата, вписанного в малый сегмент, b - в большой.
(a/2)^2 + (a + h)^2 = R^2; (b/2)^2 + (b - h)^2 = R^2;
5*a^2/4 + 2*a*h + h^2 = R^2; 5*b^2/4 - 2*b*h + h^2 = R^2;
a^2 + (8/5)h*a - (R^2 - h^2) = 0; b^2 - (8/5)h*b - (R^2 - h^2) = 0
a = -(4/5)*h + корень(((4/5)*h)^2 + (R^2 - h^2)); (отрицательный отброшен)
b = (4/5)*h + корень(((4/5)*h)^2 + (R^2 - h^2)); (отрицательный отброшен)
b - a = (8/5)*h;
Возможно, это можно как то увидеть с чисто геометрического построения, но я не нашел ...