* * * * * * * * * * * * * * * * * * * * * * * * * *
В равнобедренной трапеции диагональ является биссектрисой. Найдите площадь трапеции, если боковая сторона - 25 см, основание 39 см
ответ: 768 см².
Объяснение: Пусть ABCD равнобедренная трапеция
AD и BC основания трапеции ( AD || BC ) AD =39 см ,
ВA = CD =25 см и ∠ BAC = ∠ DAC .
S(ABCD) = h*(AD+BC)/2 -?
--------------------------------------
∠ BCA= ∠ DAC как накрест лежащие углы ( BC || AD , CA секущая) ,
следовательно ∠ BCA= ∠ DAC =∠ BAC , т.е. ΔBAC равнобедренный
BA = BC =25 см получили BA = CD =25 см .
Проведем BB₁ ⊥ AD и CC₁ ⊥ AD . BCC₁B₁ _прямоугольник BB₁ =CC₁
B₁C₁ = BC =25 см ; Δ BB₁A = Δ CC₁D(гипотен. BA= CD и катеты BB₁ =CC₁).
AB₁ =(AD - BC)/2 =(39 - 25)/2 см=7 см .
Из Δ BB₁A по теореме Пифагора:
BB₁ =√(BA² -AB₁² ) =√(25² -7)² =√(625 -49) =√576=24 (см) .
* * * h=√(25²-7)² =√(25 -7)(25 +7) =√(18*32) √(9*2*16*2)=3*2*4=24 * * *
S(ABCD) = h*(AD+BC)/2 =24(39+25)/2 =24*32 = 768 (см²).
Если провести высоту из вершины угла, который=150, то в полученном прямоугольном треугольнике высота будет напротив угла=30 => она будет = половине гипотенузы (меньшей стороны параллелограмма)=14/2=7см
Sпараллелограмма= высота*сторону, к которой она проведена=16*7=112
2) Пусть меньшее основание=х => большее=х+2
Sтрапеции=полусумме оснований, умноженной на высоту => ((х+х+2)/2)*10=10*(х+1)=10х+10
Sтрапеции=60
меньшее основание=5см => большее = 5+2=7см
3) Отмечаем на стороне АС точку О так, чтоб АО=АС/4
Т.к. Площадь треугольника=1/2 основания на высоту. Высота из точка В у АВО и АВС будет одна и та же, основание АО будет = 1/4 основания СА