В равнобедренном треугольнике с длиной основания 61 cм проведена биссектриса угла
∡ABC
. Используя второй признак равенства треугольников, докажи, что отрезок
BD является медианой, и определи длину отрезка AD
.
Рассмотрим треугольники ΔABD и Δ (треугольник записать в алфавитном порядке);
1. так как прилежащие к основанию углы данного равнобедренного треугольника равны, то
∡A=?
∡;
2. так как проведена биссектриса, то ∡ CBD;
3. стороны AB=CB у треугольников ΔABD и ΔCBD равны, так как данный ΔABC —. По второму признаку равенства треугольников ΔABD и ΔCBD равны.Значит, равны все соответствующие элементы, в том числе стороны AD=C. А это означает, что отрезок BDя вляется медианой данного треугольника и делит сторону AC пополам.
AD=
см.
Признаки параллельности прямых.
1. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Доказательство:
Пусть О - середина отрезка АВ. Проведем ОН⊥b и продлим его до пересечения с прямой а.
ΔОАК = ΔОВН по стороне и двум прилежащим к ней углам (АО = ОВ, так как О - середина АВ, углы при вершине О равны как вертикальные, ∠ОАК = ∠ОВН по условию - накрест лежащие), значит
∠ОКА = ∠ОНВ = 90°.
Два перпендикуляра к одной прямой параллельны, значит
а║b.
2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
3. Если при пересечении двух прямых секущей сумма односторонних углов 180°, то прямые параллельны.