Треугольник ADC = ABE.
Объяснение:
Треугольник ABD - равнобедренный, значит, угол ABD = ADB.
И в треугольнике углы ABD + ADB + BAD = 180°.
Но углы ABD + DBE + нижний B = 180°, причем ABD = ADB = нижнему B.
Отсюда BAD = DBE = 180° - 2*ABD
При этом углы BAD = DAC, значит, ACD = DEB.
Следовательно, треугольники ADC и BDE подобны по трем углам.
Теперь рассмотрим треугольники ADC и ABE.
Стороны AB = AD, углы DAC = BAE, ACD = AEB, ADC = ABE.
Эти треугольники равны по стороне и двум углам, прилежащим к ней.
Всё!
Из вершины В продлим сторону параллельную CL до пересечения продления стороны АС так что EC = BC; ∠ EBD = ∠BCL = α как накрест лежащие при EB || CL и секущей BC.
∠BEC = ∠EBC ⇒ ΔEBC — равнобедренный. Из этого треугольника
EB = 2BC * cosα (высота, проведенная к ЕВ, делит на два равных прямоугольных треугольника, отсюда и легко найти).
ΔCLA ~ ΔEBA следовательно из подобия
BC = CE, тогда
Среднее гармоническое двух чисел a;b : , а среднее геометрическое -
.
. В данном случае достигает максимума, когда выполняется равенство а=b.
Т.к. α — постоянная величина ; среднее гармоническое не превосходит среднего геометрического и достигает максимума , тогда и только тогда, когда AC=BC , а значит треугольник равнобедренный, отсюда CL - высота и медиана
По т. Пифагора из треугольника OLA:
OC = OA = R, окончательно имеем:
..............................