Найдите боковую сторону равнобедренного треугольника, если центр вписанной в него окружности делит высоту, проведенную к основанию в отношении 6:5 , считая от вершины, а основание равно 82 см.
Допустим большой треугольник это АВС. маленький треугольник, который образован средними линиями это треугольник МNH. Так как есть теорема о том, что средняя линяя параллельна и равна 1/2 этой стороны, то нужно 4, 5 и 6 разделить на два ( так как ты находишь стороны в маленьком треугольнике, т.е. Средние линии) У тебя получится сторона МН - 2 см, МN- 2,5 см, NH- 3 см. Теперь пишешь пусть одна часть равна х, и стороны MH MN и NH равны по 2, 2, 5 и 3 см. Зная, что периметр треугольника 30 см, составим уравнение.
Решение смотрите во вложении