(тут угол(HBC) равен 109,06°.на фото не видно, и поэтому подобрал на глаз. если что, можешь там поменять цифры и заново посчитать)
Рассмотрим четырехугольник GHBC. Значит сумма углов выпуклого четырехугольника равна 360°.
Отсюда следует уравнение:
360°=угол(HBC)+ угол(BCG)+угол(CGH)+угол(GHB)
И еще по рисунку видно что угол(CGH)=угол(HGI)+угол(IGC)
Так же угол(GHB)=угол(GHI)+угол(IHB)
Подставляем все это в уравнение
360°=угол(HBC)+угол(BCG)+угол(HGI)+угол(IGC)+угол(GHI)+угол(IHB)
Отсюда выходит такое уравнение:
угол(IGС)=360°-угол(HBC)+угол(BCG)+угол(HGI)+угол(GHI)+угол(IHB)=360°-42,71°-36,69°-68,09°-48,31°-42,71°-109,06°=12,43°
ответ: 12,43°
ответ: 80.
Объяснение:
Построим координатную плоскость и нанесем точки А,В,С. (смотри чертёж).
Чтобы найти площадь при таких данных, воспользуемся формулой Герона:
S = √p(p-a)(p-b)(p-c), где a, b и c - стороны треугольника р=(a+b+c)/2 - полупериметр треугольника.
Но есть более простая формула:
S=1/2|(x2-x1)(y3-y1)-(x3-x1)(y2-y1|); (| | - по модулю);
Обозначим точки 1 - А; 2 - В; 3 - С.
Тогда S= 1/2| (4-(-6))(-8-2)-(2-(-6))(8-(-2))|=1/2| (10*(-6))-(10*10)|=1/2| (-60-100) |= 1/2 |-160|=1/2* 160=80.