1. Свойство: Центр вписанной окружности является точкой пересечения биссектрис углов трапеции. Следовательно, треугольник COD - прямоугольный, так как сумма его острых углов равна 90° (так как в трапеции <C + < D = 180°, => (1/2)*(<C+<D) =90°).
Тогда по Пифагору CD = √(OC²+OD²). Или
CD = √(36+64) = 10 дм. АВ = CD = 10 дм.
АВ+CD = 20 дм.
Свойство: Если в трапецию вписана окружность, то сумма ее оснований равна сумме боковых сторон. Следовательно, периметр нашей трапеции равен AB+CD+ BC+AD = 4*10 =40 дм.
2. Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к его сторонам. Тогда в прямоугольном треугольнике ОВР косинус угла ОВР равен отношению прилежащего катета ВР к гипотенузе ОВ.
ВР = 16√5/2 = 8√5см. ОВ = 20 см.
Cos(<OBC) = 8√5/20 = 2√5/5.
В прямоугольном треугольнике ВНС катет
ВН = ВС*Cos(<OBC) = 16√5*(2√5/5) = 32cм.
Площадь этого треугольника равна Shbc = (1/2)*BH*BC*Sin(<OBC).
Sin(<OBC) = √(1 - Cos(<OBC)) = √(1-20/25) = 1/√5. Тогда
Shbc = (1/2)*32*16√5*(1/√5) = 256 см². Это половина площади треугольника АВС (так как ВН - высота и медиана). Значит
1) В прямоугольном треугольнике АВС из вершины прямого угла С проведем к гипотенузе AB отрезок CO так, чтобы CO=OA.
2) ∆ AOC — равнобедренный с основанием AC (по определению равнобедренного треугольника).
Значит, у него углы при основании равны:∠OAC=∠OCA=α.
3) Так как сумма острых углов прямоугольного треугольника равна 90º, то в треугольнике ABC ∠B=90º- α.
4) Так как ∠BCA=90º (по условию), то ∠BCO=90º- ∠OCA=90º-α.
5) Рассмотрим треугольник BOC.
∠BCO=90º-α, ∠B=90º- α, следовательно, ∠BCO=∠B.
Значит, треугольник BOC — равнобедренный с основанием BC (по признаку равнобедренного треугольника).
Отсюда BO=CO.
6) Так как CO=OA (по построению) и BO=CO (по доказанному), то CO=OA=BO, AB=OA+BO=2∙OA=2∙CO.
Таким образом, точка O — середина гипотенузы AB, отрезок CO соединяет вершину треугольника с серединой противолежащей стороны, значит, CO — медиана, проведенная к гипотенузе, и она равна половине гипотенузы
1. Pabcd = 40 дм. 2. Sabc = 512 см².
Объяснение:
1. Свойство: Центр вписанной окружности является точкой пересечения биссектрис углов трапеции. Следовательно, треугольник COD - прямоугольный, так как сумма его острых углов равна 90° (так как в трапеции <C + < D = 180°, => (1/2)*(<C+<D) =90°).
Тогда по Пифагору CD = √(OC²+OD²). Или
CD = √(36+64) = 10 дм. АВ = CD = 10 дм.
АВ+CD = 20 дм.
Свойство: Если в трапецию вписана окружность, то сумма ее оснований равна сумме боковых сторон. Следовательно, периметр нашей трапеции равен AB+CD+ BC+AD = 4*10 =40 дм.
2. Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к его сторонам. Тогда в прямоугольном треугольнике ОВР косинус угла ОВР равен отношению прилежащего катета ВР к гипотенузе ОВ.
ВР = 16√5/2 = 8√5см. ОВ = 20 см.
Cos(<OBC) = 8√5/20 = 2√5/5.
В прямоугольном треугольнике ВНС катет
ВН = ВС*Cos(<OBC) = 16√5*(2√5/5) = 32cм.
Площадь этого треугольника равна Shbc = (1/2)*BH*BC*Sin(<OBC).
Sin(<OBC) = √(1 - Cos(<OBC)) = √(1-20/25) = 1/√5. Тогда
Shbc = (1/2)*32*16√5*(1/√5) = 256 см². Это половина площади треугольника АВС (так как ВН - высота и медиана). Значит
Sabc = 2*256 = 512 см².