Внешний угол треугольника равен сумме двух других углов, не смежных с ним. А угол, смежный с внешним углом, находится по формуле: 180-градусная мера внешнего угла. Отсюда угол, смежный с внешним углом, равен 180-40=140 градусов. А так как этот угол лежит напротив основания равнобедренного треугольника, а сумма углов, находящихся при основании этого самого треугольника, равна 40-ка градусам. То сами оставшиеся углы равны 40:2=20 градусов. ответ: Тупой угол с градусной мерой в 140 градусов и два равных угла по 20 градусов.
SABCD - правильная пирамида , где S- вершина , АВСД - основание. Точка О- пересечение диагоналей основания , SO - высота пирамиды , SK- апофема боковой грани DSC , К∈ДС, ОК параллельноВС и АД, ОК=1/2 ВС ( или АД). Sп=1/2РL+Sосн =80 ( по условию ) L - апофема , Р - периметр Sб=1/2РL=60 ( по условию) Найдём сторону основания :Sп=60+Sосн=80 Sосн=а² а²+60=80 а²=20 а=√20=2√5 Найдём апофему SK ( L), подставим в формулу площади боковой поверхности пирамиды известные значения и выразим L: 1/2·4··2√5·L=60 P=4·2√5=8√5 4√5L=60 L=60:4√5=3√5 Рассмотрим ΔSOK ( угол О=90 ) , по теореме Пифагора SO²=SK²-OK² OK=1|2·a=√5 SO²=(3√5)²-(√5)²=45-5=40 SO=√40=2√10 SO=H H=2√10
Отсюда угол, смежный с внешним углом, равен 180-40=140 градусов.
А так как этот угол лежит напротив основания равнобедренного треугольника, а сумма углов, находящихся при основании этого самого треугольника, равна 40-ка градусам. То сами оставшиеся углы равны 40:2=20 градусов.
ответ: Тупой угол с градусной мерой в 140 градусов и два равных угла по 20 градусов.