ответ:во вложении
Объяснение:во вложении
дано:
прямая fd1 принадлежит плоскости aa1d
решение
прямая ad так же принадлежит этой плоскости, но кроме того, она принадлежит и плоскости abd, а значит, найдя точку пересечения этих прямых (а они будут пересекаться так как лежат в одной плоскости и не параллельны) мы и найдем точку пересечения fd1 с плоскостью abd. на рисунке это точка z (прошу прощения у меня довольно криво)
2. так как плоскости a1b1c1 и abc параллельны, то и линии пересечения этих плоскостей третьей параллельны (свойство параллельных плоскостей)
так как мы уже нашли точку пересечения плоскости fb1d1 с плоскостью abd (предыдущее ), то проводим параллельную прямую через нее . чертёж не смогла вставить . поищи в инете .
2) ∠BAK = ∠KAC = ∠OCA = ∠OCK, т.к. ∠A = ∠C, и СО и КА — биссектриссы.
В ΔAKB и ΔСОВ: АВ = ВС (т.к. ΔАВС — равнобедренный) ∠BAK = ∠BCO (т.к. АК и СО — биссектриссы равных углов). ∠B — общий. Таким образом, ΔAKB = ΔСОВ по 2-му признаку равенства треугольников.
Откуда AK = СО, что и требовалось доказать.
1) AQ = QB = BF = FC, т.к. AF и CQ — медианы. В ΔAFB и ΔCQB:
АВ = ВС (т.к. ΔАВС — равнобедренный)
QB = BF
∠В — общий. Таким образом, ΔAFB = ΔCQB по 1-му признаку равенства треугольников.
Откуда AF = CQ.
блин хз как рисунок скинуть, я с ноута зашла
ответ: сделано
Объяснение: