10 см
Объяснение:
Радиус вписанной окружности равен половине высоты этой трапеции (высота равна диаметру.)
В трапецию можно вписать окружность, если суммы ее противоположных сторон равны.
10+40=50 - сумма боковых сторон
50:2=25 - боковая сторона.
Опустим из тупого угла высоту на большее основание.
Получим прямоугольный треугольник с гипотенузой 13, катетом, равным полуразности оснований и равным
(40-10) : 2 = 15, и вторым катетом - высотой трапеции.
По теореме Пифагора диаметр окружности равен
√ (25²-15²) = 20 см
Радиус равен половине диаметра
20:2=10 см
ответ: радиус вписанной окружности в трапецию равен 10 см
10 см
Объяснение:
Радиус вписанной окружности равен половине высоты этой трапеции (высота равна диаметру.)
В трапецию можно вписать окружность, если суммы ее противоположных сторон равны.
10+40=50 - сумма боковых сторон
50:2=25 - боковая сторона.
Опустим из тупого угла высоту на большее основание.
Получим прямоугольный треугольник с гипотенузой 13, катетом, равным полуразности оснований и равным
(40-10) : 2 = 15, и вторым катетом - высотой трапеции.
По теореме Пифагора диаметр окружности равен
√ (25²-15²) = 20 см
Радиус равен половине диаметра
20:2=10 см
ответ: радиус вписанной окружности в трапецию равен 10 см
При пересечении двух параллельных прямых, накрест лежащие углы равны.
=> ∠3 = ∠1 = 123°, так как они накрест лежащие.
Сумма смежных углов равна 180°
∠3 смежный с ∠4 => ∠4 = 180 - 123 = 57°
При пересечении двух параллельных прямых, накрест лежащие углы равны.
=> ∠4 = ∠2 = 57°
ответ: 123°, 123°, 57°, 57°