Теорема про три перпендикуляри. Якщо пряма, проведена на площині через основу похилої, перпендикулярна до її проекції, то вона перпендикулярна і до похилої. І навпаки, якщо пряма на площині перпендикулярна до похилої, то вона перпендикулярна і до проекції похилої.На малюнку 415 АН - перпендикуляр до площини α; АМ - похила. Через основу похилої - точку М проведено пряму а. Теорема про три перпендикуляри стверджує, що якщо а НМ, то а АМ, і навпаки, якщо а АМ, то а НМ.
Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК АВС; КD - похила; АDБ - її проекція. Оскільки АD DС, то за теоремою про три перпендикуляри маємо КD DС.3) Тоді площа квадрата S = 82 = 64 (см2).
Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК АВС (мал. 417).2) КМ АС, тоді за теоремою про три перпендикуляри: ВМ АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку
1) Сумма внутренних углов любого треугольника равна 180°. 2)Касательная к окружности - прямая, имеющая с окружностью одну общую точку. Радиус, проведённый в точку касания, перпендикулярен касательной. Отрезки касательных, проведенные из одной точки, равны. Квадрат касательной равен произведению секущей на её внешнюю часть. 3) Центральный угол - угол, вершиной которого является центр окружности, а стороны которого пересекают окружность. Центральный угол измеряется дугой, на которую он опирается. 4) Треугольник - это три точки, не лежащие на одной прямой, соединённые отрезками. 5) Площадь многоугольника - это величина той части плоскости, которую многоугольник занимает. 6) Сумма углов выпуклого n-угольника равна (n-2)*180°. 7) Длина окружности находится по формуле l = 2πR 8)Если в четырёхугольник можно вписать окружность, то суммы его противоположных сторон равны. 9) Если даны стороны треугольника a, b и с, то площадь данного треугольника равна S = √p(p-a)(p-b)(p-c), где p - полупериметр, который равен (a+b+c)/2. 10) Биссектриса треугольника находится по формуле: l = √(ab(a+b+c)(a+b-c)/(a+b)), где c - сторона, к которой проведена данная биссектриса. Биссектрисы треугольника пересекаются в одной точке.
150 градусов.
Объяснение:
70-50=20гр
Значит 130+20=150 градусов.