Дано: а, в – прямые, АВ – секущая,угол 1 и угол 2 – накрест лежащие, угол 1=угол 2. Доказать: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Доказательство: Рассмотрим если угол 1= 2угол=90 градусов Отсюда следует, а и в перпендикулярны к прямой АВ и, следовательно, параллельны. Теорема: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Дано: а, в – прямые, АВ – секущая,угол 1 и угол 2 – накрест лежащие, угол 1=угол 2. Доказать: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Доказательство: Рассмотрим если угол 1= 2угол=90 градусов Отсюда следует, а и в перпендикулярны к прямой АВ и, следовательно, параллельны. Теорема: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
дуга AN=2*угол NBA=2*38=76 градусов
Диаметр AB делит окр. на 2 равные части,поэтому ANB=180 градусов
дуга NB=180-76=104 градуса
угол NMB-вписанный=104/2=52 градуса