Дана ломаная ABCG такая, что ВС = 5AB, CG = 4AB, ZABC = ZBCG = 90°. Точки D, E, F разбивают отрезок CG на четыре равные части. Найдите сумму углов, под которыми виден отрезок AB из точек С, D, E, F, G.
М=середина ас, значит ее координаты найдем как среднее арифметическое координат точек а и с м(-1; -1; -1) ас=(8; 12; -8) bm=(-5; -3; 1) cos(ac; bm)=(ac*bm)/(/ac//bm/) в числителе - скалярное произведение, в знаменателе - модули, то есть длины векторов ac*bm=-40-36-8=-84 /ac/=√(64+144+64)=√272 /bm/=√(25+9+1)=√35 cos(ac; bm)=-84/(√272√35)=-84/(4√17√7√5)=-21/√595 ∠(ac; bm)=arccos(-21/√595) -искомый угол, значение нетабличное, по другому не запишешь ответ: arccos(-21/√595)
Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.