Как известно, в равнобедренном треугольнике попарно равны боковые стороны и углы при основании. Доказательство будем строить именно на этом.
Предположим, что тр-к ABC - равнобедренный
1) Проведём высоту AK к основанию BC. По св-ву равнобедр. тр., она будет также медианой и биссектрисой. Значит, тр-ки ABK b ACK будут равны по стороне и двум прилежащим углам (половины основания, углы при основании и два прямых угла).
2) Проведём высоты BM и CH к сторонам АС и АВ соответственно. Три высоты пересекутсся в точке О, и все они будут делиться по соотношению 2:1, считая от вершин. В 1 действии мы доказали, что тр. ABK и ACK равны. Значит, если высоты пересекаются в одной точке , лежащей на общей стороне AK этих двух треугольников, то отрезки высот - BO-OM и CO-OH будут равны (т.к. не смещена линия симметрии): BO=CO OM=OH
Если равны все отрезки высот, то буду равны и целые высоты: BM = CH, чтд.
Рассмотрим произвольный равнобедренный треугольник АВС с основанием АВ. Пусть одна высота из угла А- это АК, а из угла В- ВМ. Рассмотрим треугольники АМВ и АКВ. у.(угол) А=у. В (т.к. треугольник АВС равнобедренный) у. АМВ= у. АКВ (т.к. АК и ВМ- высоты; у. АМВ= у. АКВ= 90) Из теоремы о сумме углов треугольника следует, что: у. АМВ+ у. А+ у. МВА= 180 у. АКВ+ у. В+ у. КАВ= 180 Но у. АМВ= у. АКВ и у. А=у. В. Значит у. МВА=у. КАВ. АВ- общая сторона, а значит равная в обоих треугольниках. треугольник АМВ = треугольнику АКВ (по стороне и двум прилежащим к ней углам) В равных треугольниках соответственные элементы равны, следовательно: АК=МВ. ЧТД
ответ:Таптынба?Жіберш
Объяснение: