Рассмотрим четырехугольник aclk. Здесь ac II kl по условию, а отрезки cl и ak лежат на продолжении параллельных сторон параллелограмма abcd. Значит cl II ak. Четырехугольник, у которого противоположные стороны попарно параллельны - параллелограмм. Значит, aclk - параллелограмм.Зная, что в параллелограмме противоположные стороны равны, запишем: ac=kl. Рассмотрим четырехугольник eacf. Здесь ef II ac по условию, а отрезки ea и fc лежат на продолжении параллельных сторон параллелограмма abcd. Значит ea II fc. Противоположные стороны попарно параллельны, значит, eacf - параллелограмм также. Противоположные стороны параллелограмма равны: ac=ef. Но выше мы вывели, что ac=kl, значит kl=ef. ek=ef+fk, fl=kl+fk Зная, что kl=ef, получаем ek=fl
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √40 = 6.32455532,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √40 = 6.32455532,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √16 = 4.
Из этого расчёта видно, что треугольник равнобедренный.
Периметр равен 16,64911064.
2) МЕДИАНЫ ТРЕУГОЛЬНИКА Медиана АM1 из вершины A: Координаты M1(3; -1) Длина AM1 = 4.24264068711928 Медиана BM2 из вершины B: Координаты M2(2; 2) Длина BM2 = 6 Медиана CM3 из вершины C: Координаты M3(1; -1) Длина CM3 = 4.24264068711928
Длины средних линий:
А₁В₁ = АВ/2 = 3.16227766,
В₁С₁ = ВС/2 = 3.16227766,
А₁С₁ = АС/2 = 2.