В трапеции меньшая диагональ перпендикулярна основаниям сумма острых углов равна 90º. Найдите площадь трапеции, если ее основания 2 и 18. --------- Диагональ ВD делит трапецию на два прямоугольных треугольника. Сумма острых углов АВСD равна 90º ⇒ ∠ВАD+∠ВСD=90º В прямоугольном ∆ АВD ∠ВАD+∠АВD=90º ⇒ ∠АВD= ∠ВСD ⇒ прямоугольные ∆ АВD и ∆ ВСD подобны по равному острому углу. Из подобия треугольников следует отношение: АD:ВD=ВD:ВС ВD²=АD*ВС=18*2=36 ВD=6 ВD- высота трапеции S=BD*(AD+BC):2 S=6*(18+2):2=60 (ед. площади)
1. , где n - градусная мера соответственного центрального угла. Найдем радиус окружности: , где S - площадь круга. Найдем длину дуги: ответ: см. 2. Найдем сторону квадрата a: Радиус вписанной в квадрат окружности равен: , где a - сторона квадрата. Площадь вписанного треугольника равна: , где c - сторона правильного треугольника. Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой: Найдем площадь правильного треугольника: . ответ: см.
---------
Диагональ ВD делит трапецию на два прямоугольных треугольника.
Сумма острых углов АВСD равна 90º ⇒
∠ВАD+∠ВСD=90º
В прямоугольном ∆ АВD
∠ВАD+∠АВD=90º ⇒
∠АВD= ∠ВСD ⇒
прямоугольные ∆ АВD и ∆ ВСD подобны по равному острому углу.
Из подобия треугольников следует отношение:
АD:ВD=ВD:ВС
ВD²=АD*ВС=18*2=36
ВD=6
ВD- высота трапеции
S=BD*(AD+BC):2
S=6*(18+2):2=60 (ед. площади)