Площадь прямоугольника-s= a*b докажем, что s = ab.
достроим прямоугольник до квадрата со стороной a + b, как показано на рисунке 1.
так как площадь квадрата равна квадрату его стороны, то площадь этого квадрата равна (a + b)2.с другой стороны, этот квадрат составлен из данного прямоугольника с площадью s, равного ему прямоугольника с площадью s (так как, по свойству площадей, равные многоугольники имеют равные площади) и двух квадратов с площадями a2 и b2. так как четырехугольник составлен из нескольких четырехугольников, то, по свойству площадей, его площадь равна сумме площадей этих четырехугольников: (a + b)2 = s + s + a2 + b2, или a2 + 2ab + b2 = 2s + a2 + b2.отсюда получаем: s = ab, что и требовалось доказать.
В ромбе все стороны равны А также по условию диагональ равна стороне, значит треугольник, образованный сторонами и диагональю равносторонний, значит все углы по 60 Т.к диагонали ромба пересекаются под прямым углом, получаются 4 равных прямоугольных треугольника, а у одного из них один из углов 60, значит 2-ой угол прямоугольного треугольника = 30, а значит углы между диагоналями и сторонами ромба равны 30;30;60;60;30;30;60;60 (по часовой стрелке сверху) Диагональ ромба делит угол пополам - это свойство ромба, значит углы ромба равны 60;120;60;120 Проверка: 120+120+60+60=360 А сумма углов четырёхугольника = 360, значит решение верно!
достроим прямоугольник до квадрата со стороной a + b, как показано на рисунке 1.
так как площадь квадрата равна квадрату его стороны, то площадь этого квадрата равна (a + b)2.с другой стороны, этот квадрат составлен из данного прямоугольника с площадью s, равного ему прямоугольника с площадью s (так как, по свойству площадей, равные многоугольники имеют равные площади) и двух квадратов с площадями a2 и b2. так как четырехугольник составлен из нескольких четырехугольников, то, по свойству площадей, его площадь равна сумме площадей этих четырехугольников: (a + b)2 = s + s + a2 + b2, или a2 + 2ab + b2 = 2s + a2 + b2.отсюда получаем: s = ab, что и требовалось доказать.