Я думаю, задание надо читать так: В основании пирамиды лежит прямоугольник со сторонОЙ 6 см.Основанием высоты пирамиды является центр описанной окружности с радиусом 5 см.Найдите объем пирамиды, если ее высота равна 9 см. Тогда решение следующее: Vпир.=1/3Sосн.*h (одна третья площади основания пирамиды на высоту пирамиды). Чтобы найти площадь основания, надо найти вторую сторону прямоугольника. По т. Пифагора АВ²=АС²-ВС² АС=d=2c=10см. АВ²=100-36=64⇒АВ=√64=8см. S осн.=АВ*ВС=6*8=48см² Vпир.=1/3*Sосн*h=1/3*48*9=144cм³
Начертим треугольник ABC . Угол DBC=40 градусам, т.к Биссектриса делит угол B пополам. 1)Угол BDC=60 градусов, т.к. В треугольнике ABD угол D= 120 градусов смежный, а угол BDC соответственно равно 180 градусов - 120 градусов= 60 градусов. Сумма треугольников =180 градусов. Угол C=180-(60+40)=80 градусов. 2)Следовательно BD будет больше BC, т.к напротив большего угла лежит большая сторона, и наоборот. Напротив стороны BD лежит угол C=80 градусов. Напротив стороны BC лежит угол D=60 градусов. 80 градусов больше 60 градусов. Отсюда следует, что BD больше BC.
Vпир.=1/3Sосн.*h (одна третья площади основания пирамиды на высоту пирамиды).
Чтобы найти площадь основания, надо найти вторую сторону прямоугольника. По т. Пифагора АВ²=АС²-ВС² АС=d=2c=10см.
АВ²=100-36=64⇒АВ=√64=8см.
S осн.=АВ*ВС=6*8=48см²
Vпир.=1/3*Sосн*h=1/3*48*9=144cм³