Касательная это прямая. Уравнение прямой это y=kx+c. Коэффициент k равен производной от функции в данной точке, к чьему графику строится касательная. Значит надо брать производную от 2x^4-4x . Берём производную: y'=8x^3-4. В точке x0=1 значение производной равно: 8*1^3-4=4 Значит уравнение касательной будет следующим: у=4x+c. Чтобы найти c, надо узнать значение самой функции в точке x0=1. Считаем: 2*1^4-4*1 =2-4=-2 И подставляем в уравнение: -2=4*x0+c; -2=4+с; с=-4-2; с=-6. Окончательно получаем уравнение нашей касательной y=4x-6 Вроде так как-то.
1. Каждый центральный угол соответствует одной стороне. Всего центральных углов
360:20=18
Поэтому у многоугольника 18 сторон.
2. Сумма всех внешних углов любого многоугольника, взятых по одному при каждой вершине, равна 360 градусов. Поэтому в условиях задачи
360:30=12 углов.
3. Каждый внешний угол правильного 12 угольника равен
360:12=30 градусов, а смежный ему внутренний угол равен
180-30=150 градусов.
4. Поскольку все стороны правильного треугольника равны, то они равны
По теореме синусов радиус описанного круга равен