Найдите радиусы двух касающихся окружностей, если их длины пропорциональны числам 13 и 9, а расстояние между центрами окружностей равно 44 мм. Рассмотрите два
Четырёхугольник АВСД - квадрат в том случае, если его стороны равны и диагонали равны. Находим длины сторон: АВ = √((Хв-Ха)²+(Ув-Уа)²) = √18 ≈ 4,242640687, BC = √((Хc-Хв)²+(Ус-Ув)²) = √18 ≈ 4.242640687, СД = √((Хд-Хс)²+(Уд-Ус)²) = √18 ≈ 4.242640687, АД = √((Хд-Ха)²+(Уд-Уа)²) = √18 ≈ 4.242640687.
Находим длины диагоналей: AC = √((Хc-Хa)²+(Ус-Уa)²) = √36 = 6, ВД = √((Хд-Хв)²+(Уд-Ув)²) = √36 = 6.
Доказано, условия подтверждены.
861.2) Найти угол А треугольника АВС если: А(1; 2), В(-1; 3), С(3; 2). Находим длины сторон АВ = √((Хв-Ха)²+(Ув-Уа)²) = √5 ≈ 2.236067977, BC = √((Хc-Хв)²+(Ус-Ув)²) = √17 ≈ 4.123105626, AC = √((Хc-Хa)²+(Ус-Уa)²) = √4 = 2.
Определяем косинус угла А: cos A= (АВ²+АС²-ВС²)/(2*АВ*АС) = -0.894427. Этому косинусу соответствует угол 2,677945 радиан или 153,4349 градусов.
R-радиус; d-диаметр; h-высота; Sбок--площадь боковой поверхности; Sосн--площадь основания; V--обьем; l-длина окружности; П-число Пи; ^ -степень. Дано; равносторонний цилиндр; тогда его высота= диаметру основания; длина окр=16П; тогда сперва ищем радиус=длина окружности делить на 2П; теперь мы можем найти диаметр= 2*радиус; и он=высоте цилиндра= 2*радиус; ищем площадь боковой поверхности, подставляя в формулу sбок=2пrh найденные данные; чтобы найти обьем нужно сперва площадь основания найти sосн=Пr^2; и тогда уже ищем обьем по формуле v=sосн*h Решение; r=l/2П; -->> 16П/2П=8; d=2r=2*8=16; d=h; h=2r=2*8=16; sбок=2Пrh; -->> 2П*8*16= 2П*128=256П см^2; v=sосн*h;-->> sосн=Пr^2; -->>П*8^2=64п см^2; v=sосн*h; -->> v=64п*16= 1024П см^3; ответ: площадь боковой поверхности цилинда 256П см^2; обьем 1024П см^3.
А(1; 2), В(4; 5), С(7; 2), Д(4; -1).
Четырёхугольник АВСД - квадрат в том случае, если его стороны равны и диагонали равны.
Находим длины сторон:
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √18 ≈ 4,242640687,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √18 ≈ 4.242640687,
СД = √((Хд-Хс)²+(Уд-Ус)²) = √18 ≈ 4.242640687,
АД = √((Хд-Ха)²+(Уд-Уа)²) = √18 ≈ 4.242640687.
Находим длины диагоналей:
AC = √((Хc-Хa)²+(Ус-Уa)²) = √36 = 6,
ВД = √((Хд-Хв)²+(Уд-Ув)²) = √36 = 6.
Доказано, условия подтверждены.
861.2) Найти угол А треугольника АВС если:
А(1; 2), В(-1; 3), С(3; 2).
Находим длины сторон
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √5 ≈ 2.236067977,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √17 ≈ 4.123105626,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √4 = 2.
Определяем косинус угла А:
cos A= (АВ²+АС²-ВС²)/(2*АВ*АС) = -0.894427.
Этому косинусу соответствует угол 2,677945 радиан или 153,4349 градусов.