просто приравниваете
k*x = x^2 + 4;
x^2 - k*x + 4 = 0;
Если это квадратное уравнение имеет ровно один корень, то это как раз то что надо.
А один корень тогда, когда это полный квадрат. То есть к = 4 или -4.
В самом деле, это можно и так записать -
(x - k/2)^2 = k^2/4 - 4; и полный квадрат получается, если правая часть равна нулю, то есть k^2 = 16;
Например, прямая y = 4*x в точке x= 2 равна 8, и x^2 + 4 = 8; больше нет общих точек. То же самое y = -4*x в точке x= -2 равна 8, и x^2 + 4 = 8;
просто приравниваете
k*x = x^2 + 4;
x^2 - k*x + 4 = 0;
Если это квадратное уравнение имеет ровно один корень, то это как раз то что надо.
А один корень тогда, когда это полный квадрат. То есть к = 4 или -4.
В самом деле, это можно и так записать -
(x - k/2)^2 = k^2/4 - 4; и полный квадрат получается, если правая часть равна нулю, то есть k^2 = 16;
Например, прямая y = 4*x в точке x= 2 равна 8, и x^2 + 4 = 8; больше нет общих точек. То же самое y = -4*x в точке x= -2 равна 8, и x^2 + 4 = 8;
Длина отрезка по его координатам находится по формуле т.Пифагора:
АВ =√[(X1-X2)² + (Y1-Y2)²].
В нашем случае АВ = √[(-1)² + (-4)²] = √17
АС = √[(4)² + (-1)²] = √17
То есть АВ =АС, что доказывает, что тр-к АВС - равнобедренный.
Объяснение:
надеюсь правильно удачи тебе, развивайся