1)BD высота по условию, значит в треугольник по одному равному углу. Сумма двух других углов=90 градусов. Если ∠CBD больше ∠ABD, то
∠C меньше ∠A⇒ CB больше AB.
2)В треугольнике ВМА угол ВАМ больше угла ВМА. (т.к. в любом треугольнике против большей стороны лежит больший угол и по условию ВМ>АВ)
Для треугольника ВМС угол ВМА является внешним и равен сумме внутренних углов треугольника ВМС, не смежных с ним. Т.е. угол ВМА больше угла ВСМ
Итак угол ВАМ > угла ВМА > угла ВСМ.
Значит, А > C.
3)Угол А в 2 раза меньше внешнего угла ВСК, то есть
∠А=α , ∠ВСК=2α.
Внешний угол треугольника = сумме двух внутренних углов, не смежных с ним. Значит, ∠ВСК=∠А+∠В ⇒ 2α=α+∠В ⇒ ∠В=α .
Получаем треугольник, у которого равны два угла, значит, треугольник равнобедренный ( углы при основании треугольника равны ).
4)7 треугольников
Объяснение:
треугольник АВС, АН=30 и СМ=39 медианы, АМ=МВ, ВН=НС, МН-средняя линия треугольника=1/2АС=26/2=13, АМНС - трапеция, МН параллельна АС, из точки Н проводим линию параллельную СМ до пересечения ее с продолжением АС в точке Е, ЕН=СМ=39, СМНЕ- параллелограмм, СЕ=МН=13, АЕ=АС+СЕ=26+13=39
треугольникАНЕ равнобедренный, АЕ=ЕН=39, проводим высоту ЕТ=медиане=биссектрисе на АН, АТ=ТН=1/2АН=30/2=15, треугольникАТЕ прямоугольный, ЕТ²=АЕ²-АТ²=1521-225=1296, ЕТ=36, площадь АНЕ=площадь трапеции АМНС=1/2*АН*ЕТ=1/2*30*36=540, что составляет 3/4 площади АВС
(площадь треугольника отсекаемого средней линией (МН)=1/4 площади АВС, можно подсчитать самим),
площадь АВС=площадьАМНС*4/3=540*4/3=720
16
Объяснение:
AB это катет лежащий против угла 30 градусов. По правилу такой катет равен половине гипотенузы, то есть АВ=АС/2=32/2=16