Объяснение:
А)Подсказка :
Опустите перпендикуляры из центра окружности на данные хорды.
Пусть AB и A1B1 – равные хорды окружности с центром O, не являющиеся диаметрами. Расстояния от центра окружности до этих хорд равны перпендикулярам OM и OM1, опущенным на хорды из центра окружности. Поскольку M и M1 – середины хорд, то AM = ½ AB = ½ A1B1 = A1M1.
Значит, прямоугольные треугольники AMO и A1M1O равны по катету и гипотенузе (радиус окружности). Следовательно, OM = OM1.
Если AB и A1B1 – диаметры, то утверждение очевидно.
Б) Да верно
P.S.: надеюсь на лучший ответ:)
Во-первых, так как треугольник ABC – равносторонний,
то ∠ABD = 60°.
Во-вторых, так как треугольник BDE – равносторонний,
то ∠DBE = 60°.
Тогда в треугольниках ABD и CBE:
AB = BC, BD = BE, ∠ABD = ∠DBE = 60°.
По первому признаку равенства треугольников
ΔABD = ΔCBE.
Следовательно, AD = CE.
Объяснение: в равностороннем треугольнике все углы и стороны равны.
все проверено в онлайн мектепе и все правильно! 10/10
Также если вы дошли до 8 задания то ответ будет:
Рабс=24см. АС=8см. АД=85см.
И 9 задание:
21 см.
Все правильно :)