а)Даны стороны треугольника АВ и АС и угол между ними.
На произвольной прямой отложим отрезок, равный длине стороны АС, отметим на нём точки А и С.
Из вершины А заданного угла проведем полуокружность произвольного радиуса и сделаем насечки М и К на его сторонах. АМ=АК= радиусу проведенной окружности.
Из т.А на отложенном отрезке тем же раствором циркуля проведем полуокружность. Точку пересечения с АС обозначим К1.
От К1 циркулем проведем полуокружность радиусом, равным длине отрезка КМ, соединяющим стороны заданного угла.
Эта полуокружность пересечется с первой. Через точку пересечения проведем от т. А луч и отложим на нем отрезок, равный данной стороне АВ, отметим точку В. . Соединим В и С.
Искомый треугольник построен.
б) Биссектриса проводится так же, как проводится срединный перпендикуляр к отрезку.
Из точек, взятых на сторонах угла на равном расстоянии от его вершины А ( отмеряем циркулем) проводим полуокружности равного радиуса так, чтобы они пересеклись. Через точки их пересечения и А проводим луч. Треугольник АМ1К! - равнобедренный по построению, АЕ - перпендикулярен М1К1 и делит его пополам.
Треугольники АЕМ1 и АЕК1 равны по гипотенузе и общему катету. Поэтому их углы при А равны. АЕ - биссектриса.https://ru-static.z-dn.net/files/d75/da87bd0566b405886163e8b871868042.png
Объяснение:
1. просто прповеди линейкой перпендикуляр и измерь расстояние
2. в треуг против большего угла лежит большая сторона,против меньшего-меньшая.
значит ас-самая длинная сторона
ав-самая короткая
св-средняя
3.да, существует такой признак равенства- по гипотенузе и углу.
4. углы акp и pkм смежные, в сумме дают 180гр. значит
∠pкм= 180-116=64гр
в треуг pкм pk=pм(по усл),значит треуг равнобедренный. в равнобедренном треуг углы при основании равны. ∠к=∠м=64.
ответ: 64
5. 1) внешний угол вершины в и ∠в смежные, в сумме дают 180гр. значит
∠в=180-150=30гр
2)сумма углов треуг =180гр. найдем ∠p
∠p=180-90-30=60гр
3) если pа1- бис-са(по усл), то делит угол пополам, ∠cpa1=∠а1pв=60:2=30гр.
4) рассмотрим треуг pса.
в прямоуг треуг катет, лежащий против угла в 30 гр равен половине гипотенузы. значит са1-половина гипотенузы.
са1= 16:2=8см
ответ: 8
6. 1) найдем угол р. ∠р= 180-114=66гр.
2) пусть ∠т=х
тогда х+50=∠м
сумма углов треуг =180гр, значит
х+х+50+66=180
2х=64
х=32
32гр- ∠т
остальное сам)
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
ответ:1. треугольник АВС по двум сторонам и углу между ними - это одно задание
2. (высоте?) проведенной к одной из них. - обрывок второго задания
3. Разделите отрезок АВ пополам - третье задание.
Что делать то?
Объяснение: