Через две точки можно провести прямую, притом только одну.
Две точки А и М принадлежат одновременно двум плоскостям: плоскости грани и секущей плоскости. ⇒ АМ - линия их пересечения.
Аналогично точки А и С принадлежат грани параллелепипеда и секущей плоскости. ⇒ АС - линия их пересечения.
Плоскости А1D1DA и D1C1CD пересекаются по ребру DD1
Продлим АМ и DD1 до их пересечения в точке Е.
Точки Е и С лежат одновременно в двух плоскостях, ⇒ ЕС - линия их пересечения, которая пересекает ребро D1C1 в точке К.
МК - линия пересечения плоскости сечения с верхним основанием параллелепипеда. КС - линия пересечения секущей плоскости с боковой гранью D1C1CD. Трапеция МАКС - искомое сечение б)
Противоположные грани параллелепипеда – равные параллелограммы и лежат в параллельных плоскостях..
Точки А и М лежат одновременно в двух плоскостях: АДД1А1 и в секущей плоскости. Значит МА - линия пересечения этих двух плоскостей.
Точки А и С лежат одновременно в двух плоскостях - АВСD и плоскости сечения. Значит, АС - линия их пересечения.
По свойству параллельных плоскостей:
Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
Отсюда линия пересечения MM1 искомой плоскости на верхнем основании параллелепипеда параллельна АС и проходит через середины ребер А1D1 и C1D1. Соединив К и С, получим искомое сечение - трапецию АМКС
Окружность проходит через середины сторон треугольника.
Следовательно она является описаной окружностью для треугольника
составленного из средних линий (отрезков соединяющих середины сторон треугольника) исходного треугольника
Длины средних линий найти просто это половина сторон исходного треугольника
. Исходный треугольник 6, 25, 29
Треугольник из средних линий 3; 12,5; 14,5.
Радиус описанной окружности определяется по формуле
R =a*b*с/(4корень(p(p-a)(p-b)(p-c))).
где p=(a+b+с)/2
У нас а=3;b=12,5; c=14,5
p =(3+12,5+14,5)/2=30/2=15
Находим радиус
R =3*12,5*14,5/(4*корень(15(15-3)(15-12,5)(15-14,5)))=
= 543,75/(4*корень(15*12*2,5*0,5))= 543,75/(4*15)=9,0625