Точка дотику кола, вписаного у трикутник, ділить одну із сторін на відрізки 4 см і 9 см. Знайдіть сторони трикутника, якщо його периметр дорівнює 43 см.
Допустим, что наша трапеция АВСD, где АВ и СD равные между собой стороны равнобедренной трапеции. ВС - это меньшее основание, а АD - это большее основание трапеции. Высота ВК делит АD на части, где АК=9 см, а КD=28 см. Выходит, что размер большего основания = АК+КD= 9+28 = 37 см. Поскольку известно, что высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, а другой — полуразности оснований. То используя это: АК=(АD-ВС)/2 9=(37-ВС)/2 37-ВС=9*2 37-ВС=18 ВС=37-18 ВС=19 см.
Первое, что нетрудно доказывается, --- треугольник АВК прямоугольный. Площадь прямоугольного треугольника = половине произведения катетов))) гипотенуза АВ = 4 --это очевидно из получившейся трапеции... а чтобы найти катеты не хватает известных углов))) на рисунке есть два равных треугольника: треугольник АВК равен половине равнобедренного треугольника с боковыми сторонами 4 ---по гипотенузе и острому углу))) из этого очевидно: АК = 2*КВ по т.Пифагора 4х² + х² = 16 ---> 5x² = 16 S(ABK) = (1/2)*x*2x = x² = 16/5 = 3.2
Высота ВК делит АD на части, где АК=9 см, а КD=28 см.
Выходит, что размер большего основания = АК+КD= 9+28 = 37 см.
Поскольку известно, что высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, а другой — полуразности оснований. То используя это:
АК=(АD-ВС)/2
9=(37-ВС)/2
37-ВС=9*2
37-ВС=18
ВС=37-18
ВС=19 см.