И можете с чертежом.
1. Сумма двух углов, которые получаются при пересечении двух прямых, равна 50. Найдите эти углы.
2. В равнобедренном треугольнике АВС с основанием АС проведена медиана ВМ. На ней взята точка О. Докажите равенство треугольников АВО и СВО.
3. В равнобедренном треугольнике АВС с основанием АС проведена биссектриса СК. Найдите углы треугольника АВС, если угол АКС = 60о.
4. В прямоугольном треугольнике АВС катет АВ равен 3 см, угол С равен 15о. На катете АС отмечена точка D так, что угол СBD равен 15о.
а) найдите длину отрезка BD.
б) Докажите, что ВС < 12 см
+ еще дам кто правильно ответит
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.