Равнобедренный треугольник — две стороны равны, третья называется основанием. Медиана, биссектриса, высота, проведенные к основанию - равны (являются ими одновременно) . Углы при основании равны.
Свойства равнобедренного треугольникаВ равнобедренном треугольнике:1) углы при основании равны (и острые);2) медиана, биссектриса, высота и серединный перпендикуляр, проведенные к основанию, совпадают.3) медианы, проведенные к боковым сторонам, равны.4) биссектрисы, проведенные к боковым сторонам, равны.5) высоты, проведенные к боковым сторонам, равны. Признаки равнобедренного треугольника а) Если в треугольнике два угла равны, то треугольник равнобедренный (сторона, к которой прилежат оба равных угла – основание).б) Если в треугольнике совпадают любые две из четырех линий (медиана, биссектриса, высота, серединный перпендикуляр), проведенные к некоторой стороне треугольника, то треугольник равнобедренный (а эта сторона является основанием).в) Если в треугольнике две медианы равны, то треугольник равнобедренный (а стороны, к которым проведены медианы – боковые).г) Если в треугольнике две биссектрисы равны, то треугольник равнобедренный (а стороны, к которым проведены биссектрисы – боковые).д) Если в треугольнике две высоты равны, то треугольник равнобедренный (а стороны, к которым проведены высоты – боковые).
Для этого надо составить уравнения сторон в виде у = кх + в. У параллельных прямых коэффициенты "к" равны. Сторона АВ: Уравнение прямой: Будем искать уравнение в виде y = k · x + b . В этом уравнении: k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX); b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY. k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4; b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 . Искомое уравнение: y = 4 · x - 14 .
Сторона ВС: k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5; b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 . Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД: k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4; b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 . Искомое уравнение: y = 4 · x + 13 .
Сторона АД: k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4; b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 . Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.
Свойства равнобедренного треугольникаВ равнобедренном треугольнике:1) углы при основании равны (и острые);2) медиана, биссектриса, высота и серединный перпендикуляр, проведенные к основанию, совпадают.3) медианы, проведенные к боковым сторонам, равны.4) биссектрисы, проведенные к боковым сторонам, равны.5) высоты, проведенные к боковым сторонам, равны.
Признаки равнобедренного треугольника
а) Если в треугольнике два угла равны, то треугольник равнобедренный (сторона, к которой прилежат оба равных угла – основание).б) Если в треугольнике совпадают любые две из четырех линий (медиана, биссектриса, высота, серединный перпендикуляр), проведенные к некоторой стороне треугольника, то треугольник равнобедренный (а эта сторона является основанием).в) Если в треугольнике две медианы равны, то треугольник равнобедренный (а стороны, к которым проведены медианы – боковые).г) Если в треугольнике две биссектрисы равны, то треугольник равнобедренный (а стороны, к которым проведены биссектрисы – боковые).д) Если в треугольнике две высоты равны, то треугольник равнобедренный (а стороны, к которым проведены высоты – боковые).