Есть у высоты равнобедренной трапеции, опущенной из тупого угла, свойство: она делит большее основание на две части, меньшая из которых равна полуразности оснований, большая - их полусумме. Откуда оно появилось - легко понять из рисунка. Опустив из В высоту ВН на АД, получим АН=(АД-ВС):2 =(16-4):2=6 Треугольник АВН - прямоугольный. Гипотенуза АВ=10, катет АН=6, и тут же вспоминается "египетский треугольник" с отношением сторон 3:4:5. Здесь коэффициент этого отношение k=10:5=2 ВН=4*2=8 см Но можно ВН найти по т. Пифагора - результат будет тем же. ВН=√(АВ²-АН²)=√(100-36)=8 см
Есть у высоты равнобедренной трапеции, опущенной из тупого угла, свойство: она делит большее основание на две части, меньшая из которых равна полуразности оснований, большая - их полусумме. Откуда оно появилось - легко понять из рисунка. Опустив из В высоту ВН на АД, получим АН=(АД-ВС):2 =(16-4):2=6 Треугольник АВН - прямоугольный. Гипотенуза АВ=10, катет АН=6, и тут же вспоминается "египетский треугольник" с отношением сторон 3:4:5. Здесь коэффициент этого отношение k=10:5=2 ВН=4*2=8 см Но можно ВН найти по т. Пифагора - результат будет тем же. ВН=√(АВ²-АН²)=√(100-36)=8 см
6 см, 14 см.
Объяснение:
Полупериметр прямоугольника (сумма смежных сторон) 40:2=20 см.
Пусть длина х см, тогда ширина 20-х см.
х(20-х)=84
20х-х²=84
х²-20х+84=0
По теореме Виета
х=6 и х=14
Ширина прямоугольника 6 см, длина 14 см.