НУЖНО С РЕШЕНИЕМ Если в ∆ АВС < А = 300 , < В = 900, АС= 20 см, то сторона ВС равна
а) 10 см ; б) 20 см ; в) 40 см.
2. . Если в ∆ АВС < А = 900, АВ = АС, то
а) < В = 550 ; б) < С = 450 ; в) < В = 650
3. В треугольнике АВС < С = 600, < В = 900. Высота ВВ1 = 2см. Найдите АВ.
4. В прямоугольном треугольнике DCE с прямым углом С проведена биссектриса EF, причем FC = 13 см. Найдите расстояние от точки F до прямой DE.
<BCK =<MCK =α -?
Точка K находится вне треугольника (на продолжении биссектрисы AL и MK _среднего перпендикуляра стороны BC).
Из ΔСMK : tqα = MK/MC =MK/(AB/2) =2MK/AB.
Из ΔABL: BL =AB*tq<LAB =AB*tq20° ;
ML =BM - BL = BC/2 - <BL = (AB*tq40°)/2 - AB*tq20°= (AB/2)*tq40°-AB*tq20° =
=(AB/2)*2tq20°/(1-tq²20°) - AB*tq20° =
=(AB/2)*tq20°(2/(1-tq²20°) -2) =(AB/2)*2tq³20°/(1 -tq²20°)=(AB/2)*tq²20°*tq40°.
MK | | BA ; <LKM = <LAB =20° ;
Из ΔKML: MK =ML*ctq<LKM⇔MK=AB/2)*tq²20°*tq40°*ctq20° =(AB/2)*tq20*tq40°;
окончательноьно :
tqα = 2MK/AB = 2*(AB/2)*tq20*tq40°/ AB =tq20°*tq40°.
ответ : α = arctq (tq20°*tq40°) .
(пример некрасивого решения)