М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ruff071
ruff071
25.06.2021 19:47 •  Геометрия

ABC тікбұрышты үшбұрышында ( C = 90°) ВС = 4,ABC = 45°. Центрі А нүктесінде болатындай шеңбер жүргізілген.

а) Шеңбер мен ВС түзуі жанасу үшін;

b) шеңбер мен ВС түзуінің ортақ нүктелері болмауы үшін;

c) шеңбер мен ВС түзуінің екі ортақ нүктесі болуы үшін шеңбердің радиусы қандай болуы тиіс? ​

👇
Открыть все ответы
Ответ:
Messi294
Messi294
25.06.2021
Две параллельные прямые пересекаются третьей прямой, поэтому выполняются следующие положения: углы 2 и 4 равны как вертикальные, сумма 4 и вертикального     угла углу 1 равна 180° как внутренние односторонние, значит сумма углов 1 и 2 равна 180°, угол 1 составляет 5 частей, угол 2     - 4 части, всего 9 частей, тогда 1 часть 180°: 9 = 20°.    угол 1         5·20° = 100°, угол 2       -        4·20° = 80°.    угол 4 равен 80°(как вертикальный углу 2). угол 3 и угол 4 – смежные, их сумма равна 180°.    угол 3 равен 180° - угол 4 = 180° -80° = 100°.
4,7(11 оценок)
Ответ:
konotopnastya
konotopnastya
25.06.2021
Пусть M - середина АС.
Тогда ВM - медиана и высота правильного треугольника АВС.
SM - медиана и высота равнобедренного треугольника SAC.
ВM⊥АС, SM⊥AC, ⇒ ∠SMB = 60° - линейный угол двугранного угла наклона боковой грани к основанию.

Центр шара, вписанного в правильную пирамиду, лежит в точке пересечения высоты пирамиды и биссектрисы угла, образованного апофемой и ее проекцией на основание (в нашем случае  - ∠SMH)

SH - высота пирамиды, МО - биссектриса ∠SMH. О - центр вписанного в пирамиду шара.
ОН = R - расстояние от центра шара до плоскости основания.
Проведем ОК⊥SM. АС⊥SMB (ВM⊥АС, SM⊥AC), значит ОК⊥АС, ⇒
ОК⊥SAC, т.е. ОК = R - расстояние от центра шара до грани SAC. К - точка касания.

ΔОМН: НМ = ОH / tg∠OMH = R / tg30° = R√3
НМ - радиус окружности, вписанной в правильный треугольник:
НМ = а√3/6
а√3/6 = R√3
a = 6R

ΔSHM: HM / SM = cos 60°
             SM = HM / cos60° = R√3 / (1/2)  = 2R√3

Sбок = 1/2 Pabc · SM = 1/2 · 3(6R) · 2R√3 = 18R²√3

Проведем КР⊥SH, Р - центр окружности, по которой поверхность шара касается боковой поверхности пирамиды. РК - ее радиус.
∠SKP = ∠SMH = 60° (соответственные при пересечении КР║МН секущей SM),
∠РКО = ∠SKO - ∠SKP = 90° - 60° = 30°
ΔPKO: cos ∠PKO = PK / KO
             cos 30° = r / R
             r = R√3/2

Длина окружности касания:
C = 2πr = 2π · R√3/2 = πR√3
4,8(94 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ