есть теорема - если диагонали четырехугольника в точке пересечения делятся пополам то это параллелограмм. Док-во - четырехугольник АВСД, АС и ВД диагонали, О-пересечение диагоналей, АО=СО, ВО=ДО, треугольник АОВ=треугольник СОД по двум сторонам (АО=СО, ВО=ДО) и углу между ними (уголАОВ=уголСОД как вертикальные) значит АВ=СД, уголВАО=уголДСО - это внутренние разносторонние углы, если при пересечении двух прямых третьей прямой внутренние разносторонние углы равны то прямые параллельны, АВ параллельна СД, если в четырехугольнике две стороны попарно равны и параллельны то четырехугольник - параллелограмм, АВСД-параллелограмм, также можно доказать что АД=ВС, АД параллельно ВС, АВ+ВС=13,6, периметр АВСД=2*(АВ+ВС)=2*13,6=27,2
Обозначим точки касания окружности треугольника : О - центр окружности , точка М∈АВ , точка К∈ АС, точка F∈CВ ОК перпендикулярно АС, ОF перпендикулярно ВС ( как радиусы проведённые в точки касания) . Четырехугольник ОКСF - квадрат т.к ОК=OF Гипотенуза АВ иочкой касания М разбивается на 2 отрезка АМ и МВ. Обозначим АМ=Х , тогда МВ=12-Х. По свойству касательных, проведённых из одной точки) имеем: АМ=АК=Х BF=ВМ=12-Х CF=CK=r=2 Сторона АС=Х+2 , Сторона ВС=(12-Х+2)=14-Х По теореме Пифагора : АВ²=АС²+ВС² подставим : (Х+2)²+(14;-Х)²=12²
Х²+4Х+4+196_28Х+Х²=144 2Х²-24Х+28=0 Х²-12Х+28=0 D=12²-4·28=144-112=32 √D=√32=4√2 Х1=6+2√2 Х2=6-2√2 Если АМ=6+2√2 , то АС=8+2√2 , ВС= 8-2√2 Если АМ=6-2√2 , то АС=8-2√2, ВС=8+2√√2 SΔ=1|2 AC·BC SΔ=1/2(8+2√2)(8-2√2)=1/2·(64-8)=1/2·56=28 ответ:28