ответ:В задачах этого параграфа двугранный угол с ребром АВ, на разных гранях которого отмечены точки С и D, для краткости будем называть так: двугранный угол CABD.
Дано: ABCD - тетраэдр;
Определим линейную меру двугранного угла DACB.
ADC ⊥ пл. АВС, тогда двугранный угол DACB и соответствующий ему линейный угол DCB равны 90о.
Определим линейную меру двугранного угла DABC.
Проведем отрезок СМ ⊥ АВ, соединим точки М и D.
то по теореме о 3-х перпендикулярах,
По определению, ∠DMC - линейный угол двугранного угла DABC.
По теореме Пифагора:
Тогда
Отсюда
Определим линейную меру двугранного угла BDCA.
то ∠АВС - линейный угол двугранного угла
Объяснение:
V=(Sосн*h)/3 - формула расчёта объёма пирамиды
В основании пирамиды лежит квадрат, нам нужно найти его сторону.
Формула, по которой будем расчитывать сторону квадрата: a = d√2/2
Диагональ нам дана по условию, подставляем в формулу, получаем 8√2/2
Сторона квадрата равна 4√2
Теперь рассчитываем площадь по формуле S=a*a
Чему равно a сы нашли, подставляем, получаем 4√2*4√2
Площадь равна 32 кв.дм
И теперь, когда нам известны все данные, остаётся только подставить их в формулу расчёта объёма пирамиды, которую мы писали с самого начала
V=(Sосн*h)/3 =32*(12/3)=32*4=128 дм.куб